Journal Home > Volume 5 , Issue 10

Sulfur-reduced graphene oxide composite (SGC) materials with uniformly dispersed sulfur on reduced graphene oxide sheets have been prepared by a simple aqueous one-pot synthesis method, in which the formation of the composite is achieved through the simultaneous oxidation of sulfide and reduction of graphene oxide. The synthesis process has been tracked ex situ by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FT-IR) spectroscopy, which both confirm that the majority of graphene oxide has been reduced during the synthesis reaction. The sulfur contents in the SGC, determined by thermogravimetry and elementary analysis, have been adjusted in the range from 20.9 to 72.5 wt.%. Scanning electron microscope (SEM) and transmission electron microscope (TEM) images reveal that most of the sulfur is uniformly dispersed on the reduced graphene oxide sheets, for which no sulfur in particulate form could be observed. The SGC materials have been tested as the cathode of rechargeable lithium-sulfur (Li-S) batteries, and demonstrated a high reversible capacity and good cycleability. The SGC-63.6%S can deliver a reversible capacity as high as 804 mA·h/g after 80 cycles of charge/discharge at a current density of 312 mA/g (ca. 0.186 C), and 440 mA·h/g after 500 cycles at 1250 mA/g (ca. 0.75 C).


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A Composite Material of Uniformly Dispersed Sulfur on Reduced Graphene Oxide: Aqueous One-Pot Synthesis, Characterization and Excellent Performance as the Cathode in Rechargeable Lithium-Sulfur Batteries

Show Author's information Hui Sun1Gui-Liang Xu2Yue-Feng Xu2Shi-Gang Sun2( )Xinfeng Zhang1Yongcai Qiu1Shihe Yang1( )
Department of ChemistryThe Hong Kong University of Science and Technology, Clear Water Bay, KowloonHong KongChina
State Key Laboratory of Physical Chemistry of Solid SurfacesDepartment of ChemistryCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamenChina

Abstract

Sulfur-reduced graphene oxide composite (SGC) materials with uniformly dispersed sulfur on reduced graphene oxide sheets have been prepared by a simple aqueous one-pot synthesis method, in which the formation of the composite is achieved through the simultaneous oxidation of sulfide and reduction of graphene oxide. The synthesis process has been tracked ex situ by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FT-IR) spectroscopy, which both confirm that the majority of graphene oxide has been reduced during the synthesis reaction. The sulfur contents in the SGC, determined by thermogravimetry and elementary analysis, have been adjusted in the range from 20.9 to 72.5 wt.%. Scanning electron microscope (SEM) and transmission electron microscope (TEM) images reveal that most of the sulfur is uniformly dispersed on the reduced graphene oxide sheets, for which no sulfur in particulate form could be observed. The SGC materials have been tested as the cathode of rechargeable lithium-sulfur (Li-S) batteries, and demonstrated a high reversible capacity and good cycleability. The SGC-63.6%S can deliver a reversible capacity as high as 804 mA·h/g after 80 cycles of charge/discharge at a current density of 312 mA/g (ca. 0.186 C), and 440 mA·h/g after 500 cycles at 1250 mA/g (ca. 0.75 C).

Keywords: Sulfur, graphene, cathode, Li-S rechargeable battery

References(59)

1

Wang, J. L.; Yang, J.; Wan, C. R.; Du, K.; Xie, J. Y.; Xu, N. X. Sulfur composite cathode materials for rechargeable lithium batteries. Adv. Funct. Mater. 2003, 13, 487-492.

2

Whittingham, M. S. Lithium batteries and cathode materials. Chem. Rev. 2004, 104, 4271-4301.

3

Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359-367.

4

Cheon, S. E.; Choi, S. S.; Han, J. S.; Choi, Y. S.; Jung, B. H.; Lim, H. S. Capacity fading mechanisms on cycling a high-capacity secondary sulfur cathode. J. Electrochem. Soc. 2004, 151, A2067-A2073.

5

Choi, Y. S.; Kim, S.; Choi, S. S.; Han, J. S.; Kim, J. D.; Jeon, S. E.; Jung, B. H. Effect of cathode component on the energy density of lithium-sulfur battery. Electrochim. Acta 2004, 50, 833-835.

6

Mikhaylik, Y. V.; Akridge, J. R. Polysulfide shuttle study in the Li/S battery system. J. Electrochem. Soc. 2004, 151, A1969-A1976.

7

Jayaprakash, N.; Shen, J.; Moganty, S. S.; Corona, A.; Archer, L. A. Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. Angew. Chem. Int. Edit. 2011, 50, 5904-5908.

8

Ryu, H. S.; Ahn, H. J.; Kim, K. W.; Ahn, J. H.; Cho, K. K.; Nam, T. H.; Kim, J. U.; Cho, G. B. Discharge behavior of lithium/sulfur cell with TEGDME based electrolyte at low temperature. J. Power Sources 2006, 163, 201-206.

9

Kim, S.; Jung, Y. J.; Lim, H. S. The effect of solvent component on the discharge performance of lithium-sulfur cell containing various organic electrolytes. Electrochim. Acta 2004, 50, 889-892.

10

Kim, S.; Jung, Y. J.; Park, S. J. Effects of imidazolium salts on discharge performance of rechargeable lithium-sulfur cells containing organic solvent electrolytes. J. Power Sources 2005, 152, 272-277.

11

Ryu, H. S.; Ahn, H. J.; Kim, K. W.; Ahn, J. H.; Cho, K. K.; Nam, T. H. Self-discharge characteristics of lithium/sulfur batteries using TEGDME liquid electrolyte. Electrochim. Acta 2006, 52, 1563-1566.

12

Choi, J. W.; Kim, J. K.; Cheruvally, G.; Ahn, J. H.; Ahn, H. J.; Kim, K. W. Rechargeable lithium/sulfur battery with suitable mixed liquid electrolytes. Electrochim. Acta 2007, 52, 2075-2082.

13

Gao, J.; Lowe, M. A.; Kiya, Y.; Abruna, H. D. Effects of liquid electrolytes on the charge-discharge performance of rechargeable lithium/sulfur batteries: Electrochemical and in situ X-ray absorption spectroscopic studies. J. Phys. Chem. C 2011, 115, 25132-25137.

14

Zhu, X. J.; Wen, Z. Y.; Gu, Z. H.; Lin, Z. X. Electrochemical characterization and performance improvement of lithium/ sulfur polymer batteries. J. Power Sources 2005, 139, 269-273.

15

Lee, Y. M.; Choi, N. S.; Park, J. H.; Park, J. K. Electrochemical performance of lithium/sulfur batteries with protected Li anodes. J. Power Sources 2003, 119, 964-972.

16

Zhang, B.; Qin, X.; Li, G. R.; Gao, X. P. Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energ. Environ. Sci. 2010, 3, 1531-1537.

17

Zheng, G. Y.; Yang, Y.; Cha, J. J.; Hong, S. S.; Cui, Y. Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett. 2011, 11, 4462-4467.

18

Yin, L. C.; Wang, J. L.; Yang, J.; Nuli, Y. N. A novel pyrolyzed polyacrylonitrile-sulfur@MWCNT composite cathode material for high-rate rechargeable lithium/sulfur batteries. J. Mater. Chem. 2011, 21, 6807-6810.

19

Wu, F.; Chen, J. Z.; Chen, R. J.; Wu, S. X.; Li, L.; Chen, S.; Zhao, T. Sulfur/polythiophene with a core/shell structure: Synthesis and electrochemical properties of the cathode for rechargeable lithium batteries. J. Phys. Chem. C 2011, 115, 6057-6063.

20

Wei, W.; Wang, J. L.; Zhou, L. J.; Yang, J.; Schumann, B.; NuLi, Y. N. CNT enhanced sulfur composite cathode material for high rate lithium battery. Electrochem. Commun. 2011, 13, 399-402.

21

Liang, X. A.; Wen, Z. Y.; Liu, Y.; Zhang, H.; Huang, L. Z.; Jin, J. Highly dispersed sulfur in ordered mesoporous carbon sphere as a composite cathode for rechargeable polymer Li/S battery. J. Power Sources 2011, 196, 3655-3658.

22

Li, S.; Xie, M.; Liu, J. B.; Wang, H.; Yan, H. Layer structured sulfur/expanded graphite composite as cathode for lithium battery. Electrochem. Solid St. 2011, 14, A105-A107.

23

Li, X. L.; Cao, Y. L.; Qi, W.; Saraf, L. V.; Xiao, J.; Nie, Z. M.; Mietek, J.; Zhang, J. G.; Schwenzer, B.; Liu, J. Optimization of mesoporous carbon structures for lithium-sulfur battery applications. J. Mater. Chem. 2011, 21, 16603-16610.

24

Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500-506.

25

Liang, C. D.; Dudney, N. J.; Howe, J. Y. Hierarchically structured sulfur/carbon nanocomposite material for high-energy lithium battery. Chem. Mater. 2009, 21, 4724-4730.

26

Chen, S. R.; Zhai, Y. P.; Xu, G. L.; Jiang, Y. X.; Zhao, D. Y.; Li, J. T.; Huang, L.; Sun, S. G. Ordered mesoporous carbon/sulfur nanocomposite of high performances as cathode for lithium-sulfur battery. Electrochim. Acta 2011, 56, 9549-9555.

27

Chen, J. J.; Jia, X.; She, Q. J.; Wang, C.; Zhang, Q. A.; Zheng, M. S.; Dong, Q. F. The preparation of nano-sulfur/MWCNTs and its electrochemical performance. Electrochim. Acta 2010, 55, 8062-8066.

28

Denis, P. A.; Faccio, R.; Mombru, A. W. Is it possible to dope single-walled carbon nanotubes and graphene with sulfur? ChemPhysChem 2009, 10, 715-722.

29

Wei, J. Q.; Zhu, H. W.; Jia, Y.; Shu, Q. K.; Li, C. G.; Wang, K. L.; Wei, B. Q.; Zhu, Y. Q.; Wang, Z. C.; Luo, J. B., et al. The effect of sulfur on the number of layers in a carbon nanotube. Carbon 2007, 45, 2152-2158.

30

Wang, Y. X.; Huang, L.; Sun, L. C.; Xie, S. Y.; Xu, G. L.; Chen, S. R.; Xu, Y. F.; Li, J. T.; Chou, S. L.; Dou, S. X., et al. Facile synthesis of a interleaved expanded graphite-embedded sulphur nanocomposite as cathode of Li-S batteries with excellent lithium storage performance. J. Mater. Chem. 2012, 22, 4744-4750.

31

Wang, C.; Chen, J. J.; Shi, Y. N.; Zheng, M. S.; Dong, Q. F. Preparation and performance of a core-shell carbon/sulfur material for lithium/sulfur battery. Electrochim. Acta 2010, 55, 7010-7015.

32

Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Graphene-based composite materials. Nature 2006, 442, 282-286.

33

Chou, S. L.; Wang, J. Z.; Choucair, M.; Liu, H. K.; Stride, J. A.; Dou, S. X. Enhanced reversible lithium storage in a nanosize silicon/graphene composite. Electrochem. Commun. 2010, 12, 303-306.

34

Lee, J. K.; Smith, K. B.; Hayner, C. M.; Kung, H. H. Silicon nanoparticles-graphene paper composites for Li ion battery anodes. Chem. Commun. 2010, 46, 2025-2027.

35

Paek, S. M.; Yoo, E.; Honma, I. Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Lett. 2009, 9, 72-75.

36

Ding, Y.; Jiang, Y.; Xu, F.; Yin, J.; Ren, H.; Zhuo, Q.; Long, Z.; Zhang, P. Preparation of nano-structured LiFePO4/ graphene composites by co-precipitation method. Electrochem. Commun. 2010, 12, 10-13.

37

Wang, L.; Wang, H. B.; Liu, Z. H.; Xiao, C.; Dong, S. M.; Han, P. X.; Zhang, Z. Y.; Zhang, X. Y.; Bi, C. F.; Cui, G. L. A facile method of preparing mixed conducting LiFePO4/ graphene composites for lithium-ion batteries. Solid State Ionics 2010, 181, 1685-1689.

38

Zhou, X. F.; Wang, F.; Zhu, Y. M.; Liu, Z. P. Graphene modified LiFePO4 cathode materials for high power lithium ion batteries. J. Mater. Chem. 2011, 21, 3353-3358.

39

Wang, H. L.; Yang, Y.; Liang, Y. Y.; Cui, L. F.; Casalongue, H. S.; Li, Y. G.; Hong, G. S.; Cui, Y.; Dai, H. J. LiMn1-xFexPO4 nanorods grown on graphene sheets for ultrahigh-rate-performance lithium ion batteries. Angew. Chem. Int. Edit. 2011, 50, 7364-7368.

40

Wang, J. Z.; Lu, L.; Choucair, M.; Stride, J. A.; Xu, X.; Liu, H. K. Sulfur-graphene composite for rechargeable lithium batteries. J. Power Sources 2011, 196, 7030-7034.

41

Cao, Y. L.; Li, X. L.; Aksay, I. A.; Lemmon, J.; Nie, Z. M.; Yang, Z. G.; Liu, J. Sandwich-type functionalized graphene sheet-sulfur nanocomposite for rechargeable lithium batteries. Phys. Chem. Chem. Phys. 2011, 13, 7660-7665.

42

Wang, H. L.; Yang, Y.; Liang, Y. Y.; Robinson, J. T.; Li, Y. G.; Jackson, A.; Cui, Y.; Dai, H. J. Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett. 2011, 11, 2644-2647.

43

Ji, L. W.; Rao, M. M.; Zheng, H. M.; Zhang, L.; Li, Y. C.; Duan, W. H.; Guo, J. H.; Cairns, E. J.; Zhang, Y. G. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J. Am. Chem. Soc. 2011, 133, 18522-18525.

44

Evers, S.; Nazar, L. F. Graphene-enveloped sulfur in a one pot reaction: A cathode with good coulombic efficiency and high practical sulfur content. Chem. Commun. 2012, 48, 1233-1235.

45

Chen, W. F.; Yan, L. F.; Bangal, P. R. Chemical reduction of graphene oxide to graphene by sulfur-containing compounds. J. Phys. Chem. C 2010, 114, 19885-19890.

46

Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.

47

Jeong, H. K.; Lee, Y. P.; Lahaye, R. J. W. E.; Park, M. H.; An, K. H.; Kim, I. J.; Yang, C. W.; Park, C. Y.; Ruoff, R. S.; Lee, Y. H. Evidence of graphitic AB stacking order of graphite oxides. J. Am. Chem. Soc. 2008, 130, 1362-1366.

48

Moulder, J. F.; Chastain, J. Handbook of X-Ray Photo-electron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data; Physical Electronics Division, Perkin-Elmer Corporation: 1992.

49

Chen, X. M.; Wu, G. H.; Chen, J. M.; Chen, X.; Xie, Z. X.; Wang, X. R. Synthesis of "clean" and well-dispersive Pd nanoparticles with excellent electrocatalytic property on graphene oxide. J. Am. Chem. Soc. 2011, 133, 3693-3695.

50

Weast, R. C. CRC Handbook of Chemistry and Physics; CRC Press: Boca Raton, 1987.

51

Park, S.; An, J. H.; Piner, R. D.; Jung, I.; Yang, D. X.; Velamakanni, A.; Nguyen, S. T.; Ruoff, R. S. Aqueous suspension and characterization of chemically modified graphene sheets. Chem. Mater. 2008, 20, 6592-6594.

52

Park, S.; An, J. H.; Jung, I. W.; Piner, R. D.; An, S. J.; Li, X. S.; Velamakanni, A.; Ruoff, R. S. Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett. 2009, 9, 1593-1597.

53

Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett, G. H. B.; Evmenenko, G.; Nguyen, S. T.; Ruoff, R. S. Preparation and characterization of graphene oxide paper. Nature 2007, 448, 457-460.

54

Chen, W. F.; Yan, L. F.; Bangal, P. R. Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon 2010, 48, 1146-1152.

55

Liang, X. A.; Wen, Z. Y.; Liu, Y.; Zhang, H.; Huang, L. Z.; Jin, J. Highly dispersed sulfur in ordered mesoporous carbon sphere as a composite cathode for rechargeable polymer Li/S battery. J. Power Sources 2011, 196, 3655-3658.

56

Ji, L. W.; Rao, M. M.; Aloni, S.; Wang, L.; Cairns, E. J.; Zhang, Y. G. Porous carbon nanofiber-sulfur composite electrodes for lithium/sulfur cells. Energ. Environ. Sci. 2011, 4, 5053-5059.

57

Guo, J. C.; Xu, Y. H.; Wang, C. S. Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries. Nano Lett. 2011, 11, 4288-4294.

58

Yang, Y.; Yu, G. H.; Cha, J. J.; Wu, H.; Vosgueritchian, M.; Yao, Y.; Bao, Z. A.; Cui, Y. Improving the performance of lithium-sulfur batteries by conductive polymer coating. ACS Nano 2011, 5, 9187-9193.

59

Hassoun, J.; Agostini, M.; Latini, A.; Panero, S.; Sun, Y. K.; Scrosati, B. Nickel-layer protected, carbon-coated sulfur electrode for lithium battery. J. Electrochem. Soc. 2012, 159, A390-A395.

File
nr-5-10-726_ESM.pdf (569 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 15 June 2012
Revised: 20 August 2012
Accepted: 31 August 2012
Published: 22 September 2012
Issue date: October 2012

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012

Acknowledgements

Acknowledgements

This work was supported by the NSFC/HK-RGC Joint Research Scheme (grant number N_HKUST609/09) and NSFC (grant number 20931160426).

Return