Sort:
Research Article Issue
Metallocorrole-based porous organic polymers as a heterogeneous catalytic nanoplatform for efficient carbon dioxide conversion
Nano Research 2022, 15 (2): 1145-1152
Published: 08 July 2021
Downloads:31

Metallocorrole macrocycles that represent a burgeoning class of attractive metal-complexes from the porphyrinoid family, have attracted great interest in recent years owing to their unique structure and excellent performance revealed in many fields, yet further functionalization through incorporating these motifs into porous nanomaterials employing the bottom-up approach is still scarce and remains synthetically challenging. Here, we report the targeted synthesis of porous organic polymers (POPs) constructed from custom-designed Mn and Fe-corrole complex building units, respectively denoted as CorPOP-1(Mn) and CorPOP-1(FeCl). Specifically, the robust CorPOP-1(Mn) bearing Mn-corrole active centers displays superior heterogeneous catalytic activity toward solvent-free cycloaddition of carbon dioxide (CO2) with epoxides to form cyclic carbonates under mild reaction conditions as compared with the homogeneous counterpart. CorPOP-1(Mn) can be easily recycled and does not show significant loss of reactivity after seven successive cycles. This work highlights the potential of metallocorrole-based porous solid catalysts for targeting CO2 transformations, and would provide a guide for the task-specific development of more corrole-based multifunctional materials for extended applications.

Research Article Issue
Blue emitting CsPbBr3 perovskite quantum dot inks obtained from sustained release tablets
Nano Research 2019, 12 (12): 3129-3134
Published: 18 November 2019
Downloads:19

Blue emitting perovskite ink obtained from cesium lead halide quantum dots bearing chlorine (CsPbClxBr3-x, 0 < x ≤ 3) suffers from the low photoluminescence quantum yield and poor stability. Cesium lead bromine (CsPbBr3) quantum dots free of chlorine have more stable crystal structure and fewer crystal defects. Precise control of crystal sizes and surface passivation components of CsPbBr3 quantum dots is crucial for the best use of quantum confinement effect and blueshift of emission wavelength to blue region. Here, by polymerizing acrylamide under UV-light irradiation to form polymer gel networks in dimethyl sulfoxide (DMSO) with CsPbBr3 precursors and passivating agents trapped, we successfully prepared novel sustained release tablets with different shapes and sizes. Thanks to the limitation of the polymer networks on solvent releasing, the resulting CsPbBr3 quantum dots have the average size of 1.1 ± 0.2 nm. On the basis of the excellent quantum confinement effect and optimized surface passivation, the obtained PQD ink can emit high quality blue light for more than 6 weeks. This work elucidates a new and convenient technique to prepare blue emission perovskite quantum dots ink with high stability and photoluminescence quantum yield and provides a great potential technology for the preparation of perovskite optoelectronic devices.

Research Article Issue
Preparation of dye-sensitized solar cells with high photocurrent and photovoltage by using mesoporous titanium dioxide particles as photoanode material
Nano Research 2015, 8 (12): 3830-3841
Published: 13 October 2015
Downloads:11

Several mesoporous TiO2 (MT) materials were synthesized under different conditions following a hydrothermal procedure using poly(ethylene-glycol)-block-poly(propylene-glycol)-block-poly(ethylene-glycol) (P123) as the template and titanium isopropoxide as the titanium source. The molar ratios of Ti/P123, and the pH values of the reaction solution in an autoclave were investigated. Various techniques such as Brunauer–Emmett–Teller (BET), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), laser Raman spectrometry (LRS), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM) were used to characterize the products. Then, these materials were assembled into dye-sensitized solar cells (DSSCs). Analysis of the J–V curves and electrochemical impedance spectroscopy (EIS) were applied to characterize the cells. The results indicated that the specific surface area and crystalline structure of these materials provide the possibility of high photocurrent for the cells, and that the structural characteristics of the specimens led to increased electron transfer resistance of the cells, which was beneficial for the improvement of the photovoltage of the DSSCs. The highest photoelectric conversion efficiency of the cells involving MT materials reached 8.33%, which, compared with that of P25-based solar cell (5.88%), increased by 41.7%.

total 3