AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Blue emitting CsPbBr3 perovskite quantum dot inks obtained from sustained release tablets

Hewei Yang1,2Yaqing Feng1,2Zhiyu Tu1Kuo Su1,2Xiaozhi Fan3Bingjie Liu1Zhiping Shi1,2Yuzhe Zhang1,2Chenyang Zhao1Bao Zhang1( )
School of Chemical Engineering and TechnologyTianjin UniversityTianjin300350China
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
School of Life SciencesTianjin UniversityTianjin300072China
Show Author Information

Graphical Abstract

Abstract

Blue emitting perovskite ink obtained from cesium lead halide quantum dots bearing chlorine (CsPbClxBr3-x, 0 < x ≤ 3) suffers from the low photoluminescence quantum yield and poor stability. Cesium lead bromine (CsPbBr3) quantum dots free of chlorine have more stable crystal structure and fewer crystal defects. Precise control of crystal sizes and surface passivation components of CsPbBr3 quantum dots is crucial for the best use of quantum confinement effect and blueshift of emission wavelength to blue region. Here, by polymerizing acrylamide under UV-light irradiation to form polymer gel networks in dimethyl sulfoxide (DMSO) with CsPbBr3 precursors and passivating agents trapped, we successfully prepared novel sustained release tablets with different shapes and sizes. Thanks to the limitation of the polymer networks on solvent releasing, the resulting CsPbBr3 quantum dots have the average size of 1.1 ± 0.2 nm. On the basis of the excellent quantum confinement effect and optimized surface passivation, the obtained PQD ink can emit high quality blue light for more than 6 weeks. This work elucidates a new and convenient technique to prepare blue emission perovskite quantum dots ink with high stability and photoluminescence quantum yield and provides a great potential technology for the preparation of perovskite optoelectronic devices.

Electronic Supplementary Material

Video
12274_2019_2566_MOESM1_ESM.mp4
Download File(s)
12274_2019_2566_MOESM2_ESM.pdf (3.5 MB)

References

1

Liu, J. H.; Yang, Z. X.; Ye, B. Q.; Zhao, Z. W.; Ruan, Y. S.; Guo, T. L.; Yu, X. B.; Chen, G. X.; Xu, S. A review of stability-enhanced luminescent materials: Fabrication and optoelectronic applications J. Mater. Chem. C 2019, 7, 4934–4955.

2

Yang, H. W.; Wang, A.; Zhang, L. M.; Zhou, X. Y.; Yang, G.; Li, Y. J.; Zhang, Y. Z.; Zhang, B.; Song, J.; Feng, Y. Q. Healable terpyridine-based supramolecular gels and the luminescent properties of the rare earth metal complex New J. Chem. 2017, 41, 15173–15179.

3

Lozano, G. The role of metal halide perovskites in next-generation lighting devices. J. Phys. Chem. Lett. 2018, 9, 3987–3997.

4

Yang, H. W.; Zhang, Y. Z.; Li, Y. J.; Wang, J. X.; Li, X. M.; Song, J.; Zhang, B.; Feng, Y. Q. New member of luminescent materials—Status and future of white light emitting gel. Chin. J. Org. Chem. 2017, 37, 1991–2001.

5

Yang, H. W.; Zhou, Y. Z.; Yang, Y. J.; Yi, D.; Ye, T.; Lam, T. D.; Golberg, D.; Bao, B. T.; Yao, J. N.; Wang, X. Crystal facet engineering induced anisotropic transport of charge carriers in a perovskite J. Mater. Chem. C 2018, 6, 11707–11713.

6

Zhang, Y.; Gao, P.; Oveisi, E.; Lee, Y.; Jeangros, Q.; Grancini, G.; Paek, S.; Feng, Y. Q.; Nazeeruddin, M. K. PbI2-HMPA complex pretreatment for highly reproducible and efficient CH3NH3PbI3 perovskite solar cells. J. Am. Chem. Soc. 2016, 138, 14380–14387.

7

Zhang, Y.; Zhang, Z. F.; Yan, W.; Zhang, B.; Feng, Y. Q.; Asiri, A. M.; Nazeeruddin, M. K.; Gao, P. Hexagonal mesoporous silica islands to enhance photovoltaic performance of planar junction perovskite solar cells. J Mater. Chem. A 2017, 5, 1415–1420.

8

Zhao, B. Y.; Jin, S. F.; Huang, S.; Liu, N.; Ma, J. Y.; Xue, D. J.; Han, Q. W.; Ding, J.; Ge, Q. Q.; Feng, Y. Q. et al. Thermodynamically stable orthorhombic γ-CsPbI3 thin films for high-performance photovoltaics. J. Am. Chem. Soc. 2018, 140, 11716–11725.

9

Zhou, Q.; Liang, L. S.; Hu, J. J.; Cao, B. B.; Yang, L. K.; Wu, T. J.; Li, X.; Zhang, B.; Gao, P. High-performance perovskite solar cells with enhanced environmental stability based on a (p-FC6H4C2H4NH3)2[PbI4] capping layer. Adv. Energy Mater. 2019, 9, 1802595.

10

Huang, S.; Huang, P.; Wang, L.; Han, J. B.; Chen, Y.; Zhong, H. Z. Halogenated-methylammonium based 3D halide perovskites Adv. Mater. 2019, 31, 1903830.

11

Tan, Z. K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L. M.; Credgington, D. et al. Bright light-emitting diodes based on organometal halide perovskite Nat. Nanotechnol. 2014, 9, 687–692.

12

Lin, K. B.; Xing, J.; Quan, L. N.; De Arquer, F. P. G.; Gong, X. W.; Lu, J. X.; Xie, L. Q.; Zhao, W. J.; Zhang, D.; Yan, C. Z. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent Nature 2018, 562, 245–248.

13

Xu, W. D.; Hu, Q.; Bai, S.; Bao, C. X.; Miao, Y. F.; Yuan, Z. C.; Borzda, T.; Barker, A. J.; Tyukalova, E.; Hu, Z. J. et al. Rational molecular passivation for high-performance perovskite light-emitting diodes Nat. Photonics 2019, 13, 418–424.

14

Shen, Y.; Cheng, L. P.; Li, Y. Q.; Li, W.; Chen, J. D.; Lee, S. T.; Tang, J. X. High-efficiency perovskite light-emitting diodes with synergetic outcoupling enhancement Adv. Mater. 2019, 31, 1901517.

15

Kovalenko, M. V.; Protesescu, L.; Bodnarchuk, M. I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals Science 2017, 358, 745–750.

16

Wei, Y.; Cheng, Z. Y; Lin, J. An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs Chem. Soc. Rev. 2019, 48, 310–350.

17

Wu, Y.; Li, X. M.; Zeng, H. B. Highly luminescent and stable halide perovskite nanocrystals ACS Energy Lett. 2019, 4, 673–681.

18

Wu, Z. H.; Wei, J.; Sun, Y. N.; Wu, J.; Hou, Y. F.; Wang, P.; Wang, N. P.; Zhao, Z. F. Air-stable all-inorganic perovskite quantum dot inks for multicolor patterns and white LEDs J. Mater. Sci. 2019, 54, 6917–6929.

19

Liu, H. W.; Liu, Z. Y.; Xu, W. Z.; Yang, L. T.; Liu, Y.; Yao, D.; Zhang, D. Q.; Zhang, H.; Yang, B. Engineering the photoluminescence of CsPbX3 (X = Cl, Br, and I) perovskite nanocrystals across the full visible spectra with the interval of 1 nm. ACS Appl. Mater. Interfaces 2019, 11, 14256–14265.

20

Gong, Z. L.; Zheng, W.; Gao, Y.; Huang, P.; Tu, D. T.; Li, R. F.; Wei, J. J.; Zhang, W.; Zhang, Y. Q.; Chen, X. Y. Full-spectrum persistent luminescence tuning using all-inorganic perovskite quantum dots Angew. Chem., Int. Ed. 2019, 58, 6943–6947.

21

Bi, C. H.; Wang, S. X.; Li, Q.; Kershaw, S. V.; Tian, J. J.; Rogach, A. L. Thermally stable copper(II)-doped cesium lead halide perovskite quantum dots with strong blue emission. J Phys. Chem. Lett. 2019, 10, 943–952.

22

Li, X. M.; Zhang, K.; Li, J. H.; Chen, J.; Wu, Y.; Liu, K.; Song, J. Z.; Zeng, H. B. Heterogeneous nucleation toward polar-solvent-free, fast, and one-pot synthesis of highly uniform perovskite quantum dots for wider color gamut display. Adv Mater. Interfaces. 2018, 5, 1800010.

23

Pan, J.; Shang, Y. Q.; Yin, J.; Bastiani, M. D.; Peng, W.; Dursun, I.; Sinatra, L.; El-Zohry, A. M.; Hedhili, M. N.; Emwas, A. H. et al. Bidentate ligand-passivated CsPbI3 perovskite nanocrystals for stable near-unity photoluminescence quantum yield and efficient red light-emitting diodes. J. Am. Chem. Soc. 2018, 140, 562–565.

24

Koscher, B. A.; Swabeck, J. K.; Bronstein, N. D.; Alivisatos, A. P. Essentially trap-free CsPbBr3 colloidal nanocrystals by postsynthetic thiocyanate surface treatment. J. Am Chem. Soc. 2017, 139, 6566–6569.

25

Yang, D. D.; Li, X. M.; Zhou, W. H.; Zhang, S. L.; Meng, C. F.; Wu, Y.; Wang, Y.; Zeng, H. B. CsPbBr3 quantum dots 2.0: Benzenesulfonic acid equivalent ligand awakens complete purification. Adv. Mater. 2019, 31, 1900767.

26

Jiang, Y. Z.; Qin, C. C.; Cui, M. H.; He, T. W.; Liu, K. K.; Huang, Y. M.; Luo, M. H.; Zhang, L.; Xu, H. Y.; Li, S. S. et al. Spectra stable blue perovskite light-emitting diodes Nat. Commun. 2019, 10, 1868.

27

Zou, S. H.; Liu, C. P.; Li, R. F.; Jiang, F. L.; Chen, X. Y.; Liu, Y. S.; Hong, M. S. From nonluminescent to blue-emitting Cs4PbBr6 nanocrystals: Tailoring the insulator bandgap of 0D perovskite through Sn cation doping Adv. Mater. 2019, 31, 1900606.

28

Zhang, X. T.; Wang, H.; Hu, Y.; Pei, Y. X.; Wang, S. X.; Shi, Z. F.; Colvin, V. L.; Wang, S. N.; Zhang, Y.; Yu, W. W. Strong blue emission from Sb3+-doped super small CsPbBr3 nanocrystals. J. Phys. Chem. Lett. 2019, 10, 1750–1756.

29

Lu, W. G.; Chen, C.; Han, D. B.; Yao, L. H.; Han, J. B.; Zhong, H. Z.; Wang, Y. T. Nonlinear optical properties of colloidal CH3NH3PbBr3 and CsPbBr3 quantum dots: A comparison study using Z-scan technique. Adv. Opt. Mater. 2016, 4, 1732–1737.

30

Zhang, F.; Xiao, C. T.; Li, Y. F.; Zhang, X.; Tang, J. L.; Chang, S.; Pei, Q. B.; Zhong, H. Z. Gram-scale synthesis of blue-emitting CH3NH3PbBr3 quantum dots through phase transfer strategy. Front. Chem. 2018, 6, 444.

31

Kojima, A.; Ikegami, M.; Teshima, K.; Miyasaka, T. Highly luminescent lead bromide perovskite nanoparticles synthesized with porous alumina media Chem. Lett. 2012, 41, 397–399.

32

Malgras, V.; Henzie, J.; Takei, T.; Yamauchi, Y. Stable blue luminescent CsPbBr3 perovskite nanocrystals confined in mesoporous thin films. Angew. Chem., Int. Ed. 2018, 130, 9019–9023.

33

Deng, W.; Fang, H.; Jin, X. C.; Zhang, X. J.; Zhang, X. J.; Jie, J. S. Organic-inorganic hybrid perovskite quantum dots for light-emitting diodes. J Mater. Chem. C 2018, 6, 4831–4841.

34

Lee, K. H.; Lee, J. H.; Kang, H. D.; Park, B.; Kwon, Y.; Ko, H.; Lee, C.; Lee, J.; Yang, H. Over 40 cd/A efficient green quantum dot electroluminescent device comprising uniquely large-sized quantum dots ACS Nano 2014, 8, 4893–4901.

35

Li, X. M.; Cao, F.; Yu, D. J.; Chen, J.; Sun, Z. G.; Shen, Y. L.; Zhu, Y.; Wang, L.; Wei, Y.; Wu, Y. et al. All inorganic halide perovskites nanosystem: Synthesis, structural features, optical properties and optoelectronic applications Small 2017, 13, 1603996.

36

Li, X. M.; Wu, Y.; Zhang, S. L.; Cai, B.; Gu, Y.; Song, J. Z.; Zeng, H. B. CsPbX3 quantum dots for lighting and displays: Room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv Funct. Mater. 2016, 26, 2435–2445.

37

Hu, G. M.; Qin, W. J.; Liu, M. M.; Ren, X. X.; Wu, X. M.; Yang, L. Y.; Yin, S. G. Scalable room-temperature synthesis of plum-pudding-like Cs4PbBr6/CsPbBr3 microcrystals exhibiting excellent photoluminescence. J. Mater. Chem. C 2019, 7, 4733–4739.

38

Dai, S. W.; Hsu, B. W.; Chen, C. Y.; Lee, C. A.; Liu, H. Y.; Wang, H. F.; Huang, Y. C.; Wu, T. L.; Manikandan, A.; Ho, R. M. et al. Perovskite quantum dots with near unity solution and neat-film photoluminescent quantum yield by novel spray synthesis Adv. Mater. 2018, 30, 1705532.

39

Li, B.; Ding, Z. J.; Li, Z. Q.; Li, H. R. Simultaneous enhancement of mechanical strength and luminescence performance in double-network supramolecular hydrogels J. Mater. Chem. C 2018, 6, 6869–6874.

40

Takahashi, R.; Shimano, K.; Okazaki, H.; Kurokawa, T.; Nakajima, T.; Nonoyama, T.; King, D. R.; Gong, J. P. Tough particle-based double network hydrogels for functional solid surface coatings Adv. Mater. Interfaces 2018, 5, 1801018.

41

Zhang, Y. Z.; Yang, H. W.; Guan, S.; Liu, Z. H.; Guo, L. Y.; Xie, J. W.; Zhang, J. B.; Zhang, N. N.; Song, J.; Zhang, B. et al. Gelation properties of terpyridine gluconic acid derivatives and their reversible stimuli-responsive white light emitting solution Dyes Pigm. 2018, 157, 64–71.

42

Song, Z. Y.; Li, L. C.; Zhu, D. Z.; Miao, L.; Duan, H.; Wang, Z. W.; Xiong, W.; Lv, Y. K.; Liu, M. X.; Gan, L. H. Synergistic design of a N, O co-doped honeycomb carbon electrode and an ionogel electrolyte enabling all-solidstate supercapacitors with an ultrahigh energy density J. Mater. Chem. A 2019, 7, 816–826.

43

Liu, B.; Liu, W. G. Poly(vinyl diaminotriazine): From molecular recognition to high-strength hydrogels Macromol. Rapid Commun. 2018, 39, 1800190.

44

Ghaffar, T.; Parkins, A. W. The catalytic hydration of nitriles to amides using a homogeneous platinum phosphinito catalyst J Mol Catal A: Chem. 2000, 160, 249–261.

45

Wu, L. Z.; Zhong, Q. X.; Yang, D.; Chen, M.; Hu, H. C.; Pan, Q.; Liu, H. Y.; Cao, M. H.; Xu, Y.; Sun, B. Q. et al. Improving the stability and size tunability of cesium lead halide perovskite nanocrystals using trioctylphosphine oxide as the capping ligand Langmuir 2017, 33, 12689–12696.

46

Huang, H. Y.; Yang, R. T.; Chinn, D.; Munson, C. L. Amine-grafted MCM-48 and silica xerogel as superior sorbents for acidic gas removal from natural gas. Ind. Eng Chem. Res. 2003, 42, 2427–2433.

47

Kosugi, T.; Iso, Y.; Isobe, T. Effects of oleic acid on the stability of perovskite CsPbBr3 quantum dot dispersions. Chem. Lett. 2019, 48, 349–352.

48

Bronstein, L. M.; Huang, X. L.; Retrum, J.; Schmucker, A.; Pink, M.; Stein, B. D.; Dragnea, B. Influence of iron oleate complex structure on iron oxide nanoparticle formation Chem. Mater. 2007, 19, 3624–3632.

49

Chen, H. T.; Guo, A. Q.; Zhu, J.; Cheng, L. W.; Wang, Q. Tunable photoluminescence of CsPbBr3 perovskite quantum dots for their physical research. Appl. Surf. Sci. 2019, 465, 656–664.

50

Brennan, M. C.; Herr, J. E.; Nguyen-Beck, T. S.; Zinna, J.; Draguta, S.; Rouvimov, S.; Parkhill, J.; Kuno, M. Origin of the size-dependent stokes shift in CsPbBr3 perovskite nanocrystals. J. Am. Chem. Soc. 2017, 139, 12201–12208.

51

Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.

Nano Research
Pages 3129-3134
Cite this article:
Yang H, Feng Y, Tu Z, et al. Blue emitting CsPbBr3 perovskite quantum dot inks obtained from sustained release tablets. Nano Research, 2019, 12(12): 3129-3134. https://doi.org/10.1007/s12274-019-2566-6
Topics:

726

Views

25

Crossref

N/A

Web of Science

24

Scopus

1

CSCD

Altmetrics

Received: 26 August 2019
Revised: 08 November 2019
Accepted: 10 November 2019
Published: 18 November 2019
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Return