Sort:
Editorial Issue
On the occasion of the 80th birthday of Professor Yitai Qian: Celebrating 60 years of innovation in solid-state chemistry and nanoscience
Nano Research 2021, 14 (10): 3337-3342
Published: 25 September 2021
Downloads:87

Research Article Issue
Sulfur-doped graphene anchoring of ultrafine Au25 nanoclusters for electrocatalysis
Nano Research 2021, 14 (10): 3509-3513
Published: 03 June 2021
Downloads:42

The biggest challenge of exploring the catalytic properties of under-coordinated nanoclusters is the issue of stability. We demonstrate herein that chemical dopants on sulfur-doped graphene (S-G) can be utilized to stabilize ultrafine (sub-2 nm) Au25(PET)18 clusters to enable stable nitrogen reduction reaction (NRR) without significant structural degradation. The Au25@S-G exhibits an ammonia yield rate of 27.5 μgNH3·mgAu-1·h-1 at -0.5 V with faradic efficiency of 2.3%. More importantly, the anchored clusters preserve ~ 80% NRR activity after four days of continuous operation, a significant improvement over the 15% remaining ammonia production rate for clusters loaded on undoped graphene tested under the same conditions. Isotope labeling experiments confirmed the ammonia was a direct reaction product of N2 feeding gas instead of other chemical contaminations. Ex-situ X-ray photoelectron spectroscopy and X-ray absorption near-edge spectroscopy of post-reaction catalysts reveal that the sulfur dopant plays a critical role in stabilizing the chemical state and coordination environment of Au atoms in clusters. Further ReaxFF molecular dynamics (RMD) simulation confirmed the strong interaction between Au nanoclusters (NCs) and S-G. This substrate-anchoring process could serve as an effective strategy to study ultrafine nanoclusters' electrocatalytic behavior while minimizing the destruction of the under-coordinated surface motif under harsh electrochemical reaction conditions.

Research Article Issue
Morphology-controlled transformation of Cu@Au core-shell nanowires into thermally stable Cu3Au intermetallic nanowires
Nano Research 2020, 13 (9): 2564-2569
Published: 21 June 2020
Downloads:73

Multimetallic nanowires with long-range atomic ordering hold the promise of unique physicochemical properties in many applications. Here we demonstrate the synthesis and study the stability of Cu3Au intermetallic nanowires. The synthesis is achieved by using Cu@Au core-shell nanowires as precursors. With appropriate Cu/Au stoichiometry, the Cu@Au core-shell nanowires are transformed into fully ordered Cu3Au nanowires under thermal annealing. Thermally-driven atom diffusion accounts for this transformation as revealed by X-ray diffraction and electron microscopy studies. The twin boundaries abundant in the Cu@Au core-shell nanowires facilitate the ordering process. The resulting Cu3Au intermetallic nanowires have uniform and accurate atomic positioning in the crystal lattice, which enhances the nobility of Cu. No obvious copper oxides are observed in fully ordered Cu3Au nanowires after annealing in air at 200 oC, a temperature that is much higher than those observed in Cu@Au core-shell and pure Cu nanowires. This work opens up an opportunity for further research into the development and applications of intermetallic nanowires.

Research Article Issue
Lead halide perovskite nanowires stabilized by block copolymers for Langmuir-Blodgett assembly
Nano Research 2020, 13 (5): 1453-1458
Published: 09 March 2020
Downloads:43

The rapid development of solar cells based on lead halide perovskites (LHPs) has prompted very active research activities in other closely-related fields. Colloidal nanostructures of such materials display superior optoelectronic properties. Especially, one-dimensional (1D) LHPs nanowires show anisotropic optical properties when they are highly oriented. However, the ionic nature makes them very sensitive to external environment, limiting their large scale practical applications. Here, we introduce an amphiphilic block copolymer, polystyrene-block-poly(4-vinylpyridine) (PS-P4VP), to chemically modify the surface of colloidal CsPbBr3 nanowires. The resulting core-shell nanowires show enhanced photoluminescent emission and good colloidal stability against water. Taking advantage of the stability enhancement, we further applied a modified Langmuir-Blodgett technique to assemble monolayers of highly aligned nanowires, and studied their anisotropic optical properties.

Research Article Issue
Structural, optical, and electrical properties of phasecontrolled cesium lead iodide nanowires
Nano Research 2017, 10 (4): 1107-1114
Published: 20 February 2017
Downloads:31

Cesium lead iodide (CsPbI3), in its black perovskite phase, has a suitable bandgap and high quantum efficiency for photovoltaic applications. However, CsPbI3 tends to crystalize into a yellow non-perovskite phase, which has poor optoelectronic properties, at room temperature. Therefore, controlling the phase transition in CsPbI3 is critical for practical application of this material. Here we report a systematic study of the phase transition of one-dimensional CsPbI3 nanowires and their corresponding structural, optical, and electrical properties. We show the formation of perovskite black phase CsPbI3 nanowires from the non-perovskite yellow phase through rapid thermal quenching. Post-transformed black phase CsPbI3 nanowires exhibit increased photoluminescence emission intensity with a shrinking of the bandgap from 2.78 to 1.76 eV. The perovskite nanowires were photoconductive and showed a fast photoresponse and excellent stability at room temperature. These promising optical and electrical properties make the perovskite CsPbI3 nanowires attractive for a variety of nanoscale optoelectronic devices.

Research Article Issue
MoS2-wrapped silicon nanowires for photoelectrochemical water reduction
Nano Research 2015, 8 (1): 281-287
Published: 29 December 2014
Downloads:13

Integration of molybdenum disulfide (MoS2) onto high surface area photocathodes is highly desired to minimize the overpotential for the solar-powered hydrogen evolution reaction (HER). Semiconductor nanowires (NWs) are beneficial for use in photoelectrochemistry because of their large electrochemically available surface area and inherent ability to decouple light absorption and the transport of minority carriers. Here, silicon (Si) NW arrays were employed as a model photocathode system for MoS2 wrapping, and their solar-driven HER activity was evaluated. The photocathode is made up of a well-defined MoS2/TiO2/Si coaxial NW heterostructure, which yielded photocurrent density up to 15 mA/cm2 (at 0 V vs. the reversible hydrogen electrode (RHE)) with good stability under the operating conditions employed. This work reveals that earth-abundant electrocatalysts coupled with high surface area NW electrodes can provide performance comparable to noble metal catalysts for photocathodic hydrogen evolution.

Research Article Issue
Alumina-coated Ag nanocrystal monolayers as surface-enhanced Raman spectroscopy platforms for the direct spectroscopic detection of water splitting reaction intermediates
Nano Research 2014, 7 (1): 132-143
Published: 19 December 2013
Downloads:9

A novel Ag–alumina hybrid surface-enhanced Raman spectroscopy (SERS) platform has been designed for the spectroscopic detection of surface reactions in the steady state. Single crystalline and faceted silver (Ag) nanoparticles with strong light scattering were prepared in large quantity, which enables their reproducible self-assembly into large scale monolayers of Raman sensor arrays by the Langmuir–Blodgett technique. The close packed sensor film contains high density of sub-nm gaps between sharp edges of Ag nanoparticles, which created large local electromagnetic fields that serve as "hot spots" for SERS enhancement. The SERS substrate was then coated with a thin layer of alumina by atomic layer deposition to prevent charge transfer between Ag and the reaction system. The photocatalytic water splitting reaction on a monolayer of anatase TiO2 nanoplates decorated with Pt co-catalyst nanoparticles was employed as a model reaction system. Reaction intermediates of water photo-oxidation were observed at the TiO2/solution interface under UV irradiation. The surface-enhanced Raman vibrations corresponding to peroxo, hydroperoxo and hydroxo surface intermediate species were observed on the TiO2 surface, suggesting that the photo-oxidation of water on these anatase TiO2 nanosheets may be initiated by a nucleophilic attack mechanism.

Open Access Research Article Issue
Catalytic Properties of Pt Cluster-Decorated CeO2 Nanostructures
Nano Research 2011, 4 (1): 61-71
Published: 21 October 2010
Downloads:24

Uniform clusters of Pt have been deposited on the surface of capping-agent-free CeO2 nanooctahedra and nanorods using electron beam (e-beam) evaporation. The coverage of the Pt nanocluster layer can be controlled by adjusting the e-beam evaporation time. The resulting e-beam evaporated Pt nanocluster layers on the CeO2 surfaces have a clean surface and clean interface between Pt and CeO2. Different growth behaviors of Pt on the two types of CeO2 nanocrystals were observed, with epitaxial growth of Pt on CeO2 nanooctahedra and random growth of Pt on CeO2 nanorods. The structures of the Pt clusters on the two different types of CeO2 nanocrystals have been studied and compared by using them as catalysts for model reactions. The results of hydrogenation reactions clearly showed the clean and similar chemical surface of the Pt clusters in both catalysts. The support-dependent activity of these catalysts was demonstrated by CO oxidation. The Pt/CeO2 nanorods showed much higher activity compared with Pt/CeO2 nanooctahedra because of the higher concentration of oxygen vacancies in the CeO2 nanorods. The structure-dependent selectivity of dehydrogenation reactions indicates that the structures of the Pt on CeO2 nanorods and nanooctahedra are different. Thes differences arise because the metal deposition behaviors are modulated by the strong metal-metal oxide interactions.

Open Access Research Article Issue
Thermoelectric Properties of p-Type PbSe Nanowires
Nano Research 2009, 2 (5): 394-399
Published: 01 May 2009
Downloads:24

The thermoelectric properties of individual solution-phase synthesized p-type PbSe nanowires have been examined. The nanowires showed near degenerately doped charge carrier concentrations. Compared to the bulk, the PbSe nanowires exhibited a similar Seebeck coefficient and a significant reduction in thermal conductivity in the temperature range 20 K to 300 K. Thermal annealing of the PbSe nanowires allowed their thermoelectric properties to be controllably tuned by increasing their carrier concentration or hole mobility. After optimal annealing, single PbSe nanowires exhibited a thermoelectric figure of merit (ZT) of 0.12 at room temperature.

Open Access Research Article Issue
Vertical Nanowire Array-Based Light Emitting Diodes
Nano Research 2008, 1 (2): 123-128
Published: 31 July 2008
Downloads:54

Electroluminescence from a nanowire array-based light emitting diode is reported. The junction consists of a p-type GaN thin film grown by metal–organic chemical vapor deposition (MOCVD) and a vertical n-type ZnO nanowire array grown epitaxially from the thin film through a simple low temperature solution method. The fabricated devices exhibit diode like current–voltage behavior. Electroluminescence is visible to the human eye at a forward bias of 10 V and spectroscopy reveals that emission is dominated by acceptor to band transitions in the p-GaN thin film. It is suggested that the vertical nanowire architecture of the device leads to waveguided emission from the thin film through the nanowire array.

total 10