Sort:
Research Article Issue
Design and construction of ultra-thin MoSe2 nanosheet-based heterojunction for high-speed and low-noise photodetection
Nano Research 2016, 9 (9): 2641-2651
Published: 27 June 2016
Downloads:20

Advances in the photocurrent conversion of two-dimensional (2D) transition metal dichalcogenides have enabled the realization and application of ultrasensitive and broad-spectral photodetectors. The requirements of previous devices constantly drive for complex technological implementation, resulting in limits in scale and complexity. Furthermore, the development of large-area and low-cost photodetectors would be beneficial for applications. Therefore, we demonstrate a novel design of a heterojunction photodetector based on solution-processed ultrathin MoSe2 nanosheets to satisfy the requirements of its application. The photodetector exhibits a high sensitivity to visible–near infrared light, with a linear dynamic range over 124 decibels (dB), a detectivity of ~1.2 × 1012 Jones, and noise current approaching 0.1 pA·Hz–1/2 at zero bias. Significantly, the device shows an ultra-high response speed up to 30 ns with a 3-dB predicted bandwidth over 32 MHz, which is far better than that of most of the 2D nanostructured and solution-processable photodetectors reported thus far and is comparable to that of commercial Si photodetectors. Combining our results with material-preparation methods, together with the methodology of device fabrication presented herein, can provide a pathway for the large-area integration of low-cost, high-speed photodetectors.

total 1