Journal Home > Volume 9 , Issue 9

Advances in the photocurrent conversion of two-dimensional (2D) transition metal dichalcogenides have enabled the realization and application of ultrasensitive and broad-spectral photodetectors. The requirements of previous devices constantly drive for complex technological implementation, resulting in limits in scale and complexity. Furthermore, the development of large-area and low-cost photodetectors would be beneficial for applications. Therefore, we demonstrate a novel design of a heterojunction photodetector based on solution-processed ultrathin MoSe2 nanosheets to satisfy the requirements of its application. The photodetector exhibits a high sensitivity to visible–near infrared light, with a linear dynamic range over 124 decibels (dB), a detectivity of ~1.2 × 1012 Jones, and noise current approaching 0.1 pA·Hz–1/2 at zero bias. Significantly, the device shows an ultra-high response speed up to 30 ns with a 3-dB predicted bandwidth over 32 MHz, which is far better than that of most of the 2D nanostructured and solution-processable photodetectors reported thus far and is comparable to that of commercial Si photodetectors. Combining our results with material-preparation methods, together with the methodology of device fabrication presented herein, can provide a pathway for the large-area integration of low-cost, high-speed photodetectors.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Design and construction of ultra-thin MoSe2 nanosheet-based heterojunction for high-speed and low-noise photodetection

Show Author's information Xiangshun Geng1,§Yongqiang Yu1,2,§( )Xiaoli Zhou2,§Chunde Wang2Kewei Xu1Yan Zhang3Chunyan Wu1Li Wang1Yang Jiang3( )Qing Yang2( )
School of Electrical Science and Applied PhysicsHefei University of TechnologyHefei230009China
Hefei National Laboratory for Physical Sciences at MicroscaleDepartment of ChemistryLaboratory of Nanomaterials for Energy Conversion and Synergetic Innovation Center of Quantum Information & Quantum PhysicsUniversity of Science and Technology of China (USTC)Hefei230026China
School of Materials Science and EngineeringHefei University of TechnologyHefei230009China

§These authors contributed equally to this work.

Abstract

Advances in the photocurrent conversion of two-dimensional (2D) transition metal dichalcogenides have enabled the realization and application of ultrasensitive and broad-spectral photodetectors. The requirements of previous devices constantly drive for complex technological implementation, resulting in limits in scale and complexity. Furthermore, the development of large-area and low-cost photodetectors would be beneficial for applications. Therefore, we demonstrate a novel design of a heterojunction photodetector based on solution-processed ultrathin MoSe2 nanosheets to satisfy the requirements of its application. The photodetector exhibits a high sensitivity to visible–near infrared light, with a linear dynamic range over 124 decibels (dB), a detectivity of ~1.2 × 1012 Jones, and noise current approaching 0.1 pA·Hz–1/2 at zero bias. Significantly, the device shows an ultra-high response speed up to 30 ns with a 3-dB predicted bandwidth over 32 MHz, which is far better than that of most of the 2D nanostructured and solution-processable photodetectors reported thus far and is comparable to that of commercial Si photodetectors. Combining our results with material-preparation methods, together with the methodology of device fabrication presented herein, can provide a pathway for the large-area integration of low-cost, high-speed photodetectors.

Keywords: heterojunction, molybdenum diselenide, layer transition metal dichalcogenide (TMD), urtrathin nanosheet, ultrafast photoresponse

References(40)

1

Lv, R. T.; Robinson, J. A.; Schaak, R. E.; Sun, D.; Sun, Y. F.; Mallouk, T. E.; Terrones, M. Transition metal dichalcogenides and beyond: Synthesis, properties, and applications of single- and few-layer nanosheets. Acc. Chem. Res. 2015, 48, 56-64.

2

Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two- dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699-712.

3

Shaw, J. C.; Zhou, H. L.; Chen, Y.; Weiss, N. O.; Liu, Y.; Huang, Y.; Duan, X. F. Chemical vapor deposition growth of monolayer MoSe2 nanosheets. Nano Res. 2014, 7, 511-517.

4

Lu, X.; Utama, M. I. B.; Lin, J. H.; Gong, X.; Zhang, J.; Zhao, Y. Y.; Pantelides, S. T.; Wang, J. X.; Dong, Z. L.; Liu, Z. et al. Large-area synthesis of monolayer and few- layer MoSe2 films on SiO2 substrates. Nano Lett. 2014, 14, 2419-2425.

5

Ovchinnikov, D.; Allain, A.; Huang, Y. -S.; Dumcenco, D.; Kis, A. Electrical transport properties of single-layer WS2. ACS Nano 2014, 8, 8174-8181.

6

Kong, D. S.; Wang, H. T.; Cha, J. J.; Pasta, M.; Koski, K. J.; Yao, J.; Cui, Y. Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett. 2013, 13, 1341-1347.

7

Furchi, M. M.; Polyushkin, D. K.; Pospischil, A.; Mueller, T. Mechanisms of photoconductivity in atomically thin MoS2. Nano Lett. 2014, 14, 6165-6170.

8

Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497-501.

9

Chang, Y. H.; Zhang, W. J.; Zhu, Y. H.; Han, Y.; Pu, J.; Chang, J. K.; Hsu, W. T.; Huang, J. K.; Hsu, C. L.; Chiu, M. H. et al. Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection. ACS Nano 2014, 8, 8582-8590.

10

Duan, X. D.; Wang, C.; Shaw, J. C.; Cheng, R.; Chen, Y.; Li, H. L.; Wu, X. P.; Tang, Y.; Zhang, Q. L.; Pan, A. L. et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 2014, 9, 1024-1030.

11

Gong, Y. J.; Lin, J. H.; Wang, X. L.; Shi, G.; Lei, S. D.; Lin, Z.; Zou, X. L.; Ye, G. L.; Vajtai, R.; Yakobson, B. I. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 2014, 13, 1135-1142.

12

Hong, X. P.; Kim, J.; Shi, S. F.; Zhang, Y.; Jin, C. H.; Sun, Y. H.; Tongay, S.; Wu, J. Q.; Zhang, Y. F.; Wang, F. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 2014, 9, 682-686.

13

Xia, J.; Huang, X.; Liu, L. Z.; Wang, M.; Wang, L.; Huang, B.; Zhu, D. D.; Li, J. J.; Gu, C. Z.; Meng, X. M. CVD synthesis of large-area, highly crystalline MoSe2 atomic layers on diverse substrates and application to photodetectors. Nanoscale 2014, 6, 8949-8955.

14

Wang, L.; Jie, J. S.; Shao, Z. B.; Zhang, Q.; Zhang, X. H.; Wang, Y. M.; Sun, Z.; Lee, S. T. MoS2/Si heterojunction with vertically standing layered structure for ultrafast, high- detectivity, self-driven visible-near infrared photodetectors. Adv. Funct. Mater. 2015, 25, 2910-2929.

15

Clifford, J. P.; Konstantatos, G.; Johnston, K. W.; Hoogland, S.; Levina, L.; Sargent, E. H. Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors. Nat. Nanotechnol. 2009, 4, 40-44.

16

Dou, L. T.; Yang, Y.; You, J. B.; Hong, Z. R.; Chang, W. H.; Li, G.; Yang, Y. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun. 2014, 5, 5404.

17

Geier, M. L.; McMorrow, J. J.; Xu, W. C.; Zhu, J.; Kim, C. H.; Marks, T. J.; Hersam, M. C. Solution-processed carbon nanotube thin-film complementary static random access memory. Nat. Nanotechnol. 2015, 10, 944-948.

18

Zhang, Q.; Jie, J. S.; Diao, S. L.; Shao, Z. B.; Zhang, Q.; Wang, L.; Deng, W.; Hu, W. D.; Xia, H.; Yuan, X. D.; Lee, S. T. Solution-processed graphene quantum dot deep-UV photodetectors. ACS Nano 2015, 9, 1561-1570.

19

Wang, X.; Tian, W.; Liao, M. Y.; Bando, Y.; Golberg, D. Recent advances in solution-processed inorganic nanofilm photodetectors. Chem. Soc. Rev. 2014, 43, 1400-1422.

20

McDonald, S. A.; Konstantatos, G.; Zhang, S. G.; Cyr, P. W.; Klem, E. J. D.; Levina, L.; Sargent, E. H. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat. Mater. 2005, 4, 138-142.

21

Velusamy, D. B.; Kim, R. H.; Cha, S.; Huh, J.; Khazaeinezhad, R.; Kassani, S. H.; Song, G.; Cho, S. M.; Cho, S. H.; Hwang, I. et al. Flexible transition metal dichalcogenide nanosheets for band-selective photodetection. Nat. Commun. 2015, 6, 8063.

22

Ceballos, F.; Bellus, M. Z.; Chiu, H. Y.; Zhao, H. Ultrafast charge separation and indirect exciton formation in a MoS2- MoSe2 van der waals heterostructure. ACS Nano 2014, 8, 12717-12724.

23

Shen, J. F.; He, Y. M.; Wu, J. J.; Gao, C. T.; Keyshar, K.; Zhang, X.; Yang, Y. C.; Ye, M.; Vajtai, R.; Lou, J. et al. Liquid phase exfoliation of two-dimensional materials by directly probing and matching surface tension components. Nano Lett. 2015, 15, 5449-5454.

24

Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263-275.

25

Sun, D.; Feng, S. M.; Terrones, M.; Schaak, R. E. Formation and interlayer decoupling of colloidal MoSe2 nanoflowers. Chem. Mater. 2015, 27, 3167-3175.

26

Cunningham, G.; Lotya, M.; Cucinotta, C. S.; Sanvito, S.; Bergin, S. D.; Menzel, R.; Shaffer, M. S. P.; Coleman, J. N. Solvent exfoliation of transition metal dichalcogenides: Dispersibility of exfoliated nanosheets varies only weakly between compounds. ACS Nano 2012, 6, 3468-3480.

27

Li, Y.; Xu, C. Y.; Wang, J. Y.; Zhen, L. Photodiode-like behavior and excellent photoresponse of vertical Si/monolayer MoS2 heterostructures. Sci. Rep. 2014, 4, 7186.

28

Esmaeili-Rad, M. R.; Salahuddin, S. High performance molybdenum disulfide amorphous silicon heterojunction photodetector. Sci. Rep. 2013, 3, 2345.

29

Cheng, R.; Li, D. H.; Zhou, H. L.; Wang, C.; Yin, A. X.; Jiang, S.; Liu, Y.; Chen, Y.; Huang, Y.; Duan, X. F. Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p-n diodes. Nano Lett. 2014, 14, 5590-5597.

30

Wang, X. L.; Gong, Y. J.; Shi, G.; Chow, W. L.; Keyshar, K.; Ye, G. L.; Vajtai, R.; Lou, J.; Liu, Z.; Ringe, E. et al. Chemical vapor deposition growth of crystalline monolayer MoSe2. ACS Nano 2014, 8, 5125-5131.

31

Yu, Y. Q.; Luo, L. B.; Wang, M. Z.; Wang, B.; Zeng, L. H.; Wu, C. Y.; Jie, J. S.; Liu, J. W.; Wang, L.; Yu, S. H. Interfacial state induced ultrasensitive ultraviolet light photodetector with resolved flux down to 85 photons per second. Nano Res. 2015, 8, 1098-1107.

32

Kind, H.; Yan, H.; Messer, B.; Law, M.; Yang, P. Nanowire ultraviolet photodetectors and optical switches. Adv. Mater. 2002, 14, 158-160.

DOI
33

Lin, Q. Q.; Armin, A.; Lyons, D. M.; Burn, P. L.; Meredith, P. Low noise, IR-blind organohalide perovskite photodiodes for visible light detection and imaging. Adv. Mater. 2015, 27, 2060-2064.

34

Hu, P. A.; Wang, L. F.; Yoon, M.; Zhang, J.; Feng, W.; Wang, X. N.; Wen, Z. Z.; Idrobo, J. C.; Miyamoto, Y.; Geohegan, D. B. et al. Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates. Nano Lett. 2013, 13, 1649-1654.

35

Choi, W.; Cho, M. Y.; Konar, A.; Lee, J. H.; Cha, G. B.; Hong, S. C.; Kim, S.; Kim, J.; Jena, D.; Joo, J. et al. High- detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared. Adv. Mater. 2012, 24, 5832-5836.

36

Yan, C. Y.; Singh, N.; Lee, P. S. Wide-bandgap Zn2GeO4 nanowire networks as efficient ultraviolet photodetectors with fast response and recovery time. Appl. Phys. Lett. 2010, 96, 053108.

37

Liu, X.; Gu, L. L.; Zhang, Q. P.; Wu, J. Y.; Long, Y. Z.; Fan, Z. Y. All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity. Nat. Commun. 2014, 5, 4007.

38

Chen, G. H.; Yu, Y. Q.; Zheng, K.; Ding, T.; Wang, W. L.; Jiang, Y.; Yang, Q. Fabrication of ultrathin Bi2S3 nanosheets for high-performance, flexible, visible-NIR photodetectors. Small 2015, 11, 2848-2855.

39

Zhang, Y.; Yu, Y. Q.; Mi, L. F.; Wang, H.; Zhu, Z. F.; Wu, Q. Y.; Zhang, Y. G.; Jiang, Y. In situ fabrication of vertical multilayered MoS2/Si homotype heterojunction for high-speed visible-near-infrared photodetectors. Small 2016, 12, 1062-1071.

40

Zhou, X. L.; Jiang, J.; Ding, T.; Zhang, J. J.; Pan, B. C.; Zuo, J.; Yang, Q. Fast colloidal synthesis of scalable Mo-rich hierarchical ultrathin MoSe2x nanosheets for high-performance hydrogen evolution. Nanoscale 2014, 6, 11046-11051.

File
nr-9-9-2641_ESM.pdf (2.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 21 November 2015
Revised: 15 May 2016
Accepted: 17 May 2016
Published: 27 June 2016
Issue date: September 2016

Copyright

© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This work was supported by grants from the National Basic Research Program of China (No. 2012CB922001), the National Natural Science Foundation of China (Nos. 21571166, 61076040, 51271173, and 21071136), the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 2012011111006), the Nature Science Foundation of Anhui Province (No. J2014AKZR0059), and the Fundamental Research Funds for the Central Universities (Nos. JZ2015HGXJ0182, JZ2014HGBZ0063, and WK6030000019).

Return