Publications
Sort:
Research Article Issue
Numerical investigation of indoor particulate contaminant transport using the Eulerian-Eulerian and Eulerian-Lagrangian two-phase flow models
Experimental and Computational Multiphase Flow 2020, 2 (1): 31-40
Published: 09 May 2019
Downloads:27

Transport of micron particles in a displacement ventilated room was simulated using both the Eulerian-Eulerian model and the Eulerian-Lagrangian model. The same inter-phase action mechanisms were included in both models. The models were compared against each other in the aspects of air velocity, particle concentration, and particle-wall interactions. It was found that the two models have similar accuracy in predicting the airflow field while each of them has its own advantage and drawback in modelling particle concentration and particle-wall interactions. The E-E model is capable of providing a mechanistic description of the inter-phase interactions, whilst the E-L model has obvious advantage in modelling particle-wall interactions. Advices were given for choosing an appropriate model for modelling particulate contaminant transport in indoor environments.

Research Article Issue
Optimization of indoor environmental quality and ventilation load in office space by multilevel coupling of building energy simulation and computational fluid dynamics
Building Simulation 2014, 7 (6): 649-659
Published: 05 April 2014
Downloads:18

The fundamentals, implementation, and application of an integrated simulation as an approach for predicting the indoor environmental quality for an open-type office and for quantifying energy saving potential under optimized ventilation are presented in this paper. An integrated simulation procedure based on a building energy simulation and computational fluid dynamics, incorporated with a conceptual model of a CO2 demand controlled ventilation (DCV) system and proportional integral control of an air conditioning system as the optimization assessment of conceptual model in the occupied zone, was developed. This numerical model quantitatively exhibits energy conservation and represents the non-uniform distribution patterns of airflow properties and CO2 concentration levels in terms of energy recovery and indoor thermal comfort. By means of an integrated simulation, the long-term energy consumption of heating, ventilation, and air conditioning systems are predicted precisely and dynamically. Relative to a ventilation system with a basic constant air volume supply rate characterized by a fixed outdoor air intake rate from the ceiling supply opening, the optimized CO2-DCV system coupled with energy recovery ventilators reduced total energy consumption by 29.1% (in summer conditions) and 40.9% (winter).

total 2