Sort:
Open Access Issue
A Survey on Algorithms for Intelligent Computing and Smart City Applications
Big Data Mining and Analytics 2021, 4 (3): 155-172
Published: 12 May 2021
Downloads:137

With the rapid development of human society, the urbanization of the world’s population is also progressing rapidly. Urbanization has brought many challenges and problems to the development of cities. For example, the urban population is under excessive pressure, various natural resources and energy are increasingly scarce, and environmental pollution is increasing, etc. However, the original urban model has to be changed to enable people to live in greener and more sustainable cities, thus providing them with a more convenient and comfortable living environment. The new urban framework, the smart city, provides excellent opportunities to meet these challenges, while solving urban problems at the same time. At this stage, many countries are actively responding to calls for smart city development plans. This paper investigates the current stage of the smart city. First, it introduces the background of smart city development and gives a brief definition of the concept of the smart city. Second, it describes the framework of a smart city in accordance with the given definition. Finally, various intelligent algorithms to make cities smarter, along with specific examples, are discussed and analyzed.

Open Access Issue
Gradient Amplification: An Efficient Way to Train Deep Neural Networks
Big Data Mining and Analytics 2020, 3 (3): 196-207
Published: 16 July 2020
Downloads:43

Improving performance of deep learning models and reducing their training times are ongoing challenges in deep neural networks. There are several approaches proposed to address these challenges, one of which is to increase the depth of the neural networks. Such deeper networks not only increase training times, but also suffer from vanishing gradients problem while training. In this work, we propose gradient amplification approach for training deep learning models to prevent vanishing gradients and also develop a training strategy to enable or disable gradient amplification method across several epochs with different learning rates. We perform experiments on VGG-19 and Resnet models (Resnet-18 and Resnet-34) , and study the impact of amplification parameters on these models in detail. Our proposed approach improves performance of these deep learning models even at higher learning rates, thereby allowing these models to achieve higher performance with reduced training time.

total 2