Publications
Sort:
Open Access Research Article Issue
Structural, dielectric, and electrical properties of lithium niobate microfibers
Journal of Advanced Ceramics 2016, 5 (1): 84-92
Published: 31 March 2016
Downloads:26

Lithium niobate (LiNbO3) fibers, obtained from the heat treatment of composite fibers (polymer/inorganic precursors), were successfully prepared by using the blow-spinning technique. A chemical solution containing Li and Nb ions, added to poly(vinyl pyrrolidone) solution, was used as precursor solution. The best condition for producing composite fibers was determined. The morphology of green and crystallized fibers was characterized by scanning electron microscopy (SEM) and revealed fibrous structure with an average diameter around 800 nm. X-ray diffraction (XRD) measurement revealed a pure LiNbO3 (LN) phase formation. Detailed studies of dielectric response at various frequencies and temperatures exhibited a dielectric anomaly at 364 ℃. The electrical properties (impedance, modulus, and conductivity) of the fibers were studied using impedance spectroscopy technique. The contributions of grain and grain boundary effects were observed in the LN fibers. The activation energy of the composite fibers was found to be 1.5 eV in the high temperature region (325–400 ℃).

total 1