Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
We successfully constructed phase-change quantum dots string (PCQDS) systems and studied their signal responses. The PCQDS actually is a cascaded structure consisted of several stochastic resonance (SR) two-state systems, in which inherent non-linearity, i.e., phase-change of quantum dots (QDs), plays elementary and important roles to modulate signal output. We established an SR model to simulate signal responses depending on stimulation history. We know that some QDs will oscillate with input forcing frequency, while certain QDs will oscillate in their own frequency triggered by phase transition. These two effects cooperate to generate polymorphic response patterns, including action potential patterns exhibited by envelope of spike peak values. An interesting and important simulation is that we replicate the memory effect in Nb-doped AlNO, i.e., a QDs dispersed system. The result indicates that memory can occur in a system only constructed by volatile elementary units, implying memory existing in network. Long-term plasticity and spike-rate dependent plasticity can also be realized by using frequency and phase modulation. Our study provides a new scope to study signal handling and memory effect in quantum system.
Gammaitoni, L.; Hänggi, P.; Jung, P.; Marchesoni, F. Stochastic resonance. Rev. Mod. Phys. 1998, 70, 223–287.
McDonnell, M. D.; Abbott, D. What is stochastic resonance. Definitions, misconceptions, debates, and its relevance to biology. PLoS Comput. Biol. 2009, 5, e1000348.
Stein, M. B.; Roy-Byrne, P. P.; Craske, M. G.; Bystritsky, A.; Sullivan, G.; Pyne, J. M.; Katon, W.; Sherbourne, C. D. Functional impact and health utility of anxiety disorders in primary care outpatients. Med. Care. 2005, 43, 1164–1170.
Ma, W. J.; Beck, J. M.; Latham, P. E.; Pouget, A. Bayesian inference with probabilistic population codes. Nat. Neurosci. 2006, 9, 1432–1438.
Sumner, L. W.; Mendes, P.; Dixon, R. A. Plant metabolomics: Large-scale phytochemistry in the functional genomics era. Phytochemistry 2003, 62, 817–836.
Mold, J. W.; Vesely, S. K.; Keyl, B. A.; Schenk, J. B.; Roberts, M. The prevalence, predictors, and consequences of peripheral sensory neuropathy in older patients. J. Am. Board Fam. Pract. 2004, 17, 309–318.
Faisal, A. A.; Selen, L. P. J.; Wolpert, D. M. Noise in the nervous system. Nat. Rev. Neurosci. 2008, 9, 292–303.
Bahar, S.; Moss, F. Stochastic resonance and synchronization in the crayfish caudal photoreceptor. Math. Biosci. 2004, 188, 81–97.
Jaramillo, F.; Wiesenfeld, K. Mechanoelectrical transduction assisted by Brownian motion: A role for noise in the auditory system. Nat. Neurosci. 1998, 1, 384–388.
Chatterjee, M.; Robert, M. E. Noise enhances modulation sensitivity in cochlear implant listeners: Stochastic resonance in a prosthetic sensory system. J. Assoc. Res. Oto. 2001, 2, 159–171.
Douglass, J. K.; Wilkens, L.; Pantazelou, E.; Moss, F. Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance. Nature 1993, 365, 337–340.
Collins, J. J.; Imhoff, T. T.; Grigg, P. Noise-enhanced information transmission in rat SA1 cutaneous mechanoreceptors via aperiodic stochastic resonance. J. Neurophysiol. 1996, 76, 642–645.
Ivey, C.; Apkarian, A. V.; Chialvo, D. R. Noise-induced tuning curve changes in mechanoreceptors. J. Neurophysiol. 1998, 79, 1879–1890.
Mendez-Balbuena, I.; Manjarrez, E.; Schulte-Mönting, J.; Huethe, F.; Tapia, J. A.; Hepp-Reymond, M. C.; Kristeva, R. Improved sensorimotor performance via stochastic resonance. J. Neurosci. 2012, 32, 12612–12618.
Fallon, J. B.; Carr, R. W.; Morgan, D. L. Stochastic resonance in muscle receptors. J. Neurophysiol. 2004, 91, 2429–2436.
Martínez, L.; Pérez, T.; Mirasso, C. R.; Manjarrez, E. Stochastic resonance in the motor system: Effects of noise on the monosynaptic reflex pathway of the cat spinal cord. J. Neurophysiol. 2007, 97, 4007–4016.
Cek, M. E.; Uludag, I. F. Spectral resonance in Fitzhugh-Nagumo neuron system: Relation with stochastic resonance and its role in EMG signal characterization. Cogn. Neurodyn. 2024, 18, 1779–1787.
Perc, M.; Gosak, M. Pacemaker-driven stochastic resonance on diffusive and complex networks of bistable oscillators. New J. Phys. 2008, 10, 053008.
Wan, Q.; Zeng, F.; Yin, J.; Sun, Y. M.; Hu, Y. D.; Liu, J. L.; Wang, Y. C.; Li, G. Q.; Guo, D.; Pan, F. Phase-change nano-clusters embedded memristor for simulating synaptic learning. Nanoscale 2019, 11, 5684–5692.
Wan, Q.; Zeng, F.; Sun, Y. M.; Chen, T. J.; Yu, J. W.; Wu, H. Q.; Zhao, Z.; Cao, J. L.; Pan, F. Memristive behaviors dominated by reversible nucleation dynamics of phase-change nanoclusters. Small 2022, 18, 2105070.
Wan, Q.; Zeng, F.; Yu, J. W.; Chen, T. J.; Lu, Z. A.; Pan, F. Local activity in a self-assembled quantum dot system. Adv. Quantum Technol. 2023, 6, 2300021.
Peters, K. J. H.; Geng, Z.; Malmir, K.; Smith, J. M.; Rodriguez, S. R. K. Extremely broadband stochastic resonance of light and enhanced energy harvesting enabled by memory effects in the nonlinear response. Phys. Rev. Lett. 2021, 126, 213901.
Jennings, C.; Ma, X. Y.; Wickramasinghe, T.; Doty, M.; Scheibner, M.; Stinaff, E.; Ware, M. Self-assembled InAs/GaAs coupled quantum dots for photonic quantum technologies. Adv. Quantum Technol. 2020, 3, 1900085.
Merrill, D. R.; Bikson, M.; Jefferys, J. G. R. Electrical stimulation of excitable tissue: Design of efficacious and safe protocols. J. Neurosci. Methods 2005, 141, 171–198.
Kaye, A. D.; Ridgell, S.; Alpaugh, E. S.; Mouhaffel, A.; Kaye, A. J.; Cornett, E. M.; Chami, A. A.; Shah, R.; Dixon, B. M.; Viswanath, O. et al. Peripheral nerve stimulation: A review of techniques and clinical efficacy. Pain Ther. 2021, 10, 961–972.
Sdrulla, A. D.; Guan, Y.; Raja, S. N. Spinal cord stimulation: Clinical efficacy and potential mechanisms. Pain Pract. 2018, 18, 1048–1067.
Krauss, J. K.; Lipsman, N.; Aziz, T.; Boutet, A.; Brown, P.; Chang, J. W.; Davidson, B.; Grill, W. M.; Hariz, M. I.; Horn, A. et al. Technology of deep brain stimulation: Current status and future directions. Nat. Rev. Neurol. 2021, 17, 75–87.
Hänggi, P.; Jung, P.; Zerbe, C.; Moss, F. Can colored noise improve stochastic resonance. J. Stat. Phys. 1993, 70, 25–47.
Benzi, R.; Sutera, A.; Vulpiani, A. The mechanism of stochastic resonance. J. Phys. A: Math. Gen. 1981, 14, L453.
Collins, J.; Chow, C. C.; Capela, A. C.; Imhoff, T. T. Aperiodic stochastic resonance. Phys. Rev. E 1996, 54, 5575.
Longtin, A. Stochastic resonance in neuron models. J. Stat. Phys. 1993, 70, 309–327.
Wellens, T.; Shatokhin, V.; Buchleitner, A. Stochastic resonance. Rev. Mod. Phys. 2003, 67, 45.
Lindner, B.; Garcı́a-Ojalvo, J.; Neiman, A.; Schimansky-Geier, L. Effects of noise in excitable systems. Phy. Rep. 2004, 392, 321–424.
Wu, Y. C.; Feng, J. W. Development and application of artificial neural network. Wirel. Pers. Commun. 2018, 102, 1645–1656.
Haddock, R. E.; Hill, C. E. Rhythmicity in arterial smooth muscle. J. Physiol. 2005, 566, 645–656.
Wan, Q.; Zeng, F.; Lu, Z. A.; Yu, J. W.; Chen, T. J.; Pan, F. Adaptive signal modulation evolved by the inherent nonlinearity of phase-change quantum-dot string. Nano Lett. 2024, 24, 8089–8097.
Löfstedt, R.; Coppersmith, S. N. Quantum stochastic resonance. Phys. Rev. Lett. 1994, 72, 1947–1950.
337
Views
41
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).