AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home Friction Article
PDF (6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Research progress of the interaction between blood vessels and intervention catheters and its surface modification

Huilu Yuan1,2Chengxiong Lin2,3( )Chengyong Wang1( )
College of Mechanical and Electrical Engineering, Guangdong University of Technology, Guangzhou 510006, China
Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Polymer Material Products, National Engineering Research Center for Healthcare Devices, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
School of Mechanical Automation, Wuhan University of Science and Technology, Wuhan 430081, China
Show Author Information

Graphical Abstract

Abstract

As the aging population increases, the global incidence of cardiovascular diseases is rapidly growing, and vascular intervention has become a mainstream treatment method for vascular diseases. However, due to the complexity of the in vivo environment, mechanical interactions such as compression, adhesion, and friction occur between the catheter and vascular tissue during the intervention process, which can cause varying degrees of tissue damage. This review examined the interaction mechanism between vascular tissue and interventional catheters in response to mechanical damage in interventional surgery. It also provided an overview of the work on surface modification of interventional catheters using hydrophilic lubricated and anti-adhesion coatings. The current paper aims to reduce postoperative complications for patients with cardiovascular disease and improve the safety and accuracy of cardiovascular surgery.

References

[1]

Roth G A, Mensah G A, Johnson C O, Addolorato G, Ammirati E, Baddour L, Barengo N C, Beaton A Z, Benjamin E J, Benziger C P, et al. Global burden of cardiovascular diseases and risk factors, 1990–2019: Update from the GBD 2019 study. J Am Coll Cardiol 76(25): 2982–3021 (2021)

[2]

Timmis A, Townsend N, Gale C P, Torbica A, Lettino M, Petersen S E, Mossialos E A, Maggioni A P, Kazakiewicz D, May H T, et al. European society of cardiology: Cardiovascular disease statistics 2019. Eur Heart J 41(1): 12–85 (2020)

[3]

Yeasmin F, Nessa A, Rahman M M, Huq M M, Afroz L, Sharmin T, Akhter T, Rukunuzzaman M, Ferdous A R. A comparative study of body mass index and blood pressure between sedentary and non-sedentary workers. Mymensingh Med J 32(1): 61–64 (2023)

[4]

Zyriax B C, Windler E. Lifestyle changes to prevent cardio- and cerebrovascular disease at midlife: A systematic review. Maturitas 167: 60–65 (2023)

[5]

Şahin B, İlgün G. Risk factors of deaths related to cardiovascular diseases in World Health Organization (WHO) member countries. Health Soc Care Community 30(1): 73–80 (2022)

[6]
National Health Commission. China Health and Wellness Statistical Yearbook. Beijing (China): Peking Union Medical College Press, 2022.
[7]

Ma L Y, Wang Z W, Fan J, Hu S S. An essential introduction to the annual report on cardiovascular health and diseases in China (2021). Chinese General Practice 25(27): 3331–3346 (2022)

[8]

Urban P, Mehran R, Colleran R, Angiolillo D J, Byrne R A, Capodanno D, Cuisset T, Cutlip D, Eerdmans P, Eikelboom J, et al. Defining high bleeding risk in patients undergoing percutaneous coronary intervention: A consensus document from the Academic Research Consortium for High Bleeding Risk. Eur Heart J 40(31): 2632–2653 (2019)

[9]

Forssmann-Falck R. Werner F. A pioneer of cardiology. American Journal of Cardiology 79(5): 651–660 (1997)

[10]

Hiraya D, Sato A, Hoshi T, Sakai S, Watabe H, Ieda M. Incidence, retrieval methods, and outcomes of intravascular ultrasound catheter stuck within an implanted stent: Systematic literature review. J Cardiol 75(2): 164–170 (2020)

[11]

Klaudel J, Surman D, Pawłowski K, Trenkner W. Stroke thrombectomy catheter for aspiration of refractory or inaccessible clot in acute myocardial infarction. Pwki 18(1): 65–69 (2022)

[12]

Ackermann M A, Ender J K. Recent developments in catheter-based cardiac procedures. Anesthesiol Clin 37(4): 621–638 (2019)

[13]

Bremer W, Ray C E Jr, Shah K Y. Role of interventional radiologist in the management of acute pulmonary embolism. Semin Intervent Radiol 37(1): 62–73 (2020)

[14]

Chirinos D A, Vargas E, Kamsickas L, Carnethon M. The role of behavioral science in addressing cardiovascular health disparities: A narrative review of efforts, challenges, and future directions. Health Psychol 41(10): 740–754 (2022)

[15]

Blanco-Mavillard I, de Pedro-Gómez J E, Rodríguez-Calero M Á, Bennasar-Veny M, Parra-García G, Fernández-Fernández I, Bujalance-Hoyos J, Moya-Suárez A B, Cobo-Sánchez J L, Ferrer-Cruz F, et al. Multimodal intervention for preventing peripheral intravenous catheter failure in adults (PREBACP): A multicentre, cluster-randomised, controlled trial. Lancet Haematol 8(9): e637–e647 (2021)

[16]

Rafii-Tari H, Payne C J, Yang G Z. Current and emerging robot-assisted endovascular catheterization technologies: A review. Ann Biomed Eng 42(4): 697–715 (2014)

[17]

Tang W, Wan T R, Gould D A, How T, John N W. A stable and real-time nonlinear elastic approach to simulating guidewire and catheter insertions based on cosserat rod. IEEE Trans Biomed Eng 59(8): 2211–2218 (2012)

[18]

Khoshnam M, Skanes A C, Patel R V. Modeling and estimation of tip contact force for steerable ablation catheters. IEEE Trans Biomed Eng 62(5): 1404–1415 (2015)

[19]

Meng Y G, Xu J, Ma L R, Jin Z M, Prakash B, Ma T B, Wang W Z. A review of advances in tribology in 2020–2021. Friction 10(10): 1443–1595 (2022)

[20]

Zhang X G, Zhang Y L, Jin Z M. A review of the bio-tribology of medical devices. Friction 10(1): 4–30 (2022)

[21]

Ali A, Sakes A, Arkenbout E A, Henselmans P, van Starkenburg R, Szili-Torok T, Breedveld P. Catheter steering in interventional cardiology: Mechanical analysis and novel solution. Proc Inst Mech Eng H 233(12): 1207–1218 (2019)

[22]

Franz R, Tanga C F, Herrmann J W. Treatment of peripheral vascular disease through percutaneous brachial artery access. J Vasc Surg 64(3): 866–867 (2016)

[23]

Hawkins R B, Mehaffey J H, Mullen M G, Nifong W L, Chitwood W R, Katz M R, Quader M A, Kiser A C, Speir A M, Ailawadi G. A propensity matched analysis of robotic, minimally invasive, and conventional mitral valve surgery. Heart 104(23): 1970–1975 (2018)

[24]

Rao S V, Bernat I, Bertrand O F. Remaining challenges and opportunities for improvement in percutaneous transradial coronary procedures. Eur Heart J 33(20): 2521–2526 (2012)

[25]

Vierhout B P, Zeebregts C J. Did percutaneous compared with cutdown access for endovascular aneurysm repair really make a difference. Eur J Vasc Endovasc Surg 61(3): 395 (2021)

[26]

Dellimore K H J, Mank A J G, Wojnowski J, Noble C, Franklin S E. Evaluation of catheter-induced tribological damage to porcine aorta using infra-red spectroscopy. Biotribology 7: 11–21 (2016)

[27]

Lin C X, Kaper H J, Li W, Splinter R, Sharma P K. Role of endothelial glycocalyx in sliding friction at the catheter-blood vessel interface. Sci Rep 10: 11855 (2020)

[28]

Chen Y M, Kurokawa T, Tominaga T, Yasuda K, Osada Y, Gong J P, Yamamoto K, Ando J. Study on the sliding friction of endothelial cells cultured on hydrogel and the role of glycocalyx on friction reduction. Adv Eng Mater 12(11): B628–B636 (2010)

[29]

Bostan L E, Noble C, Smulders N, Lewis R, Carré M J, Franklin S, Green N H, MacNeil S. Measurement of friction-induced changes in pig aorta fibre organization by non-invasive imaging as a model for detecting the tissue response to endovascular catheters. Biotribology 12: 24–32 (2017)

[30]

Tang W, Ge S R, Zhu H, Cao X C, Li N. The influence of normal load and sliding speed on frictional properties of skin. J Bionic Eng 5(1): 33–38 (2008)

[31]

Guo B Y, Ley E, Tian J Y, Zhang J J, Liu Y, Prasad S. Experimental and numerical studies of intestinal frictions for propulsive force optimisation of a vibro-impact capsule system. Nonlinear Dyn 101(1): 65–83 (2020)

[32]

Klaassen M, De Vries E G, Masen M A. Interpersonal differences in the friction response of skin relate to FTIR measures for skin lipids and hydration. Colloids Surf B Biointerfaces 189: 110883 (2020)

[33]

Wang X, Meng M Q. An experimental study of resistant properties of the small intestine for an active capsule endoscope. Proc Inst Mech Eng H 224(1): 107–118 (2010)

[34]

Lin C X, Yu Q Y, Wang J, Ji W, Li W, Zhou Z R. Friction behavior between endoscopy and esophageal internal surface. Wear 376: 272–280 (2017)

[35]

Woo S H, Kim T W, Cho J H. Stopping mechanism for capsule endoscope using electrical stimulus. Med Biol Eng Comput 48(1): 97–102 (2010)

[36]

Cuccia N L, Pothineni S, Wu B, Méndez Harper J, Burton J C. Pore-size dependence and slow relaxation of hydrogel friction on smooth surfaces. Proc Natl Acad Sci U S A 117(21): 11247–11256 (2020)

[37]

Takashima K, Shimomura R, Kitou T, Terada H, Yoshinaka K, Ikeuchi K. Contact and friction between catheter and blood vessel. Tribol Int 40(2): 319–328 (2007)

[38]

Dougherty G, Varro J. A quantitative index for the measurement of the tortuosity of blood vessels. Med Eng Phys 22(8): 567–574 (2000)

[39]

Weiss D, Gefen A, Einav S. Modelling catheter–vein biomechanical interactions during an intravenous procedure. Comput Meth Biomech Biomed Eng 19(3): 330–339 (2016)

[40]

Prokopovich P, Perni S. Prediction of the frictional behavior of mammalian tissues against biomaterials. Acta Biomater 6(10): 4052–4059 (2010)

[41]

Prokopovich P, Perni S. Contact interactions of aorta against PVC catheters. Tribol Int 66: 157–164 (2013)

[42]

Noble C, Smulders N, Green N H, Lewis R, Carré M J, Franklin S E, MacNeil S, Taylor Z A. Creating a model of diseased artery damage and failure from healthy porcine aorta. J Mech Behav Biomed Mater 60: 378–393 (2016)

[43]

Gundiah N, Babu A R, Pruitt L A. Effects of elastase and collagenase on the nonlinearity and anisotropy of porcine aorta. Physiol Meas 34(12): 1657–1673 (2013)

[44]

Dunn A C, Zaveri T D, Keselowsky B G, Sawyer W G. Macroscopic friction coefficient measurements on living endothelial cells. Tribol Lett 27(2): 233–238 (2007)

[45]

Suzuki A, Tomita H, Okada H. Form follows function: The endothelial glycocalyx. Transl Res 247: 158–167 (2022)

[46]

Noble M I M, Drake-Holland A J, Vink H. Hypothesis: Arterial glycocalyx dysfunction is the first step in the atherothrombotic process. Qjm 101(7): 513–518 (2008)

[47]

Buckland J. Fire and ice: Syndecan-3 in inflammation. Nat Rev Rheumatol 10(9): 514 (2014)

[48]

Dyer D P, Salanga C L, Volkman B F, Volkman B F, Kawamura T, Handel T M. The dependence of chemokine-glycosaminoglycan interactions on chemokine oligomerization. Glycobiology 26(3): 312–326 (2016)

[49]

Pisconti A, Banks G B, Babaeijandaghi F, Dalla Betta N, Rossi F M V, Chamberlain J S, Olwin B B. Loss of niche-satellite cell interactions in syndecan-3 null mice alters muscle progenitor cell homeostasis improving muscle regeneration. Skeletal Muscle 6(1): 34 (2016)

[50]

Wu F, Peng Z L, Park P W, Kozar R A. Loss of syndecan-1 abrogates the pulmonary protective phenotype induced by plasma after hemorrhagic shock. Shock 48(3): 340–345 (2017)

[51]

Chen Y M, Shiraishi N, Satokawa H, Kakugo A, Narita T, Gong J P, Osada Y, Yamamoto K, Ando J. Cultivation of endothelial cells on adhesive protein-free synthetic polymer gels. Biomaterials 26(22): 4588–4596 (2005)

[52]

Klein L W, Korpu D. Damped and ventricularized coronary pressure waveforms. J Invasive Cardiol 29(11): 387–389 (2017)

[53]

Dash R K, Jayaraman G, Mehta K N. Estimation of increased flow resistance in a narrow catheterized artery: A theoretical model. J Biomech 29(7): 917–930 (1996)

[54]

Sarkar A, Jayaraman G. Nonlinear analysis of oscillatory flow in the annulus of an elastic tube: Application to catheterized artery. Physics of Fluids 13(10): 2901–2911 (2001)

[55]

Sarkar A, Jayaraman G. Correction to flow rate - pressure drop relation in coronary angioplasty: steady streaming effect. J Biomech 31(9): 781–791 (1998)

[56]

Tian X P, Sun A Q, Liu X, Pu F, Deng X Y, Kang H Y, Fan Y B. Influence of catheter insertion on the hemodynamic environment in coronary arteries. Med Eng Phys 38(9): 946–951 (2016)

[57]

Roux E, Bougaran P, Dufourcq P, Couffinhal T. Fluid shear stress sensing by the endothelial layer. Front Physiol 11: 861 (2020)

[58]

Nader E, Skinner S, Romana M, Fort R, Lemonne N, Guillot N, Gauthier A, Antoine-Jonville S, Renoux C, Hardy-Dessources M D, et al. Blood rheology: Key parameters, impact on blood flow, role in sickle cell disease and effects of exercise. Front Physiol 10: 1329 (2019)

[59]

Grigioni M, Daniele C, Morbiducci U, D’Avenio G, Di Benedetto G, Del Gaudio C, Barbaro V. Computational model of the fluid dynamics of a cannula inserted in a vessel: Incidence of the presence of side holes in blood flow. J Biomech 35(12): 1599–1612 (2002)

[60]

Onder A, Yapici R, Incebay O. An experimental performance comparison of Newtonian and non-Newtonian fluids on a centrifugal blood pump. Proc Inst Mech Eng H 236(3): 399–405 (2022)

[61]

Srivastava L M, Edemeka U E, Srivastava V P. Particulate suspension model for blood flow under external body acceleration. Int J Bio Med Comput 37(2): 113–129 (1994)

[62]

Ponalagusamy R. Suspension model for blood flow through a catheterized arterial stenosis with peripheral layer of plasma free from cells. Eur Phys J Plus 131(6): 185 (2016)

[63]

Suojanen J N, Brophy D P, Nasser I. Thrombus on indwelling central venous catheters: The histopathology of “fibrin sheaths”. CardioVascular Interv Radiol 23(3): 194–197 (2000)

[64]

Silva-Bermudez P, Rodil S E. An overview of protein adsorption on metal oxide coatings for biomedical implants. Surf Coat Technol 233: 147–158 (2013)

[65]

Gunning G M, McArdle K, Mirza M, Duffy S, Gilvarry M, Brouwer P A. Clot friction variation with fibrin content; implications for resistance to thrombectomy. J NeuroIntervent Surg 10(1): 34–38 (2018)

[66]

Kanaga Karuppiah K S, Sundararajan S, Xu Z H, Li X D. The effect of protein adsorption on the friction behavior of ultra-high molecular weight polyethylene. Tribol Lett 22(2): 181–188 (2006)

[67]

Zhang C N, Guo S X, Xiao N, Wu J Q, Li Y X, Jiang Y H. Transverse microvibrations-based guide wires drag reduction evaluation for endovascular interventional application. Biomed Microdevices 20(3): 69 (2018)

[68]

Sobolewski P, El Fray M. Cardiac catheterization: Consequences for the endothelium and potential for nanomedicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol 7(3): 458–473 (2015)

[69]

Wagner R M F, Maiti R, Carré M J, Perrault C M, Evans P C, Lewis R. Bio-tribology of vascular devices: A review of tissue/device friction research. Biotribology 25: 100169 (2021)

[70]

Saraswathibhatla A, Indana D, Chaudhuri O. Cell–extracellular matrix mechanotransduction in 3D. Nat Rev Mol Cell Biol 24(7): 495–516 (2023)

[71]

Kanchanawong P, Calderwood D A. Organization, dynamics and mechanoregulation of integrin-mediated cell–ECM adhesions. Nat Rev Mol Cell Biol 24(2): 142–161 (2023)

[72]

Chaudhuri O, Cooper-White J, Janmey P A, Mooney D J, Shenoy V B. Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature 584(7822): 535–546 (2020)

[73]

Kechagia J Z, Ivaska J, Roca-Cusachs P. Integrins as biomechanical sensors of the microenvironment. Nat Rev Mol Cell Biol 20(8): 457–473 (2019)

[74]

Liu D J, Caliskan S, Rashidfarokhi B, Oldenhof H, Jung K, Sieme H, Hilfiker A, Wolkers W F. Fourier transform infrared spectroscopy coupled with machine learning classification for identification of oxidative damage in freeze-dried heart valves. Sci Rep 11: 12299 (2021)

[75]

Thompson S M, Gorny K R, Koepsel E M K, Welch B T, Mynderse L, Lu A M, Favazza C P, Felmlee J P, Woodrum D A. Body interventional MRI for diagnostic and interventional radiologists: Current practice and future prospects. RadioGraphics 41(6): 1785–1801 (2021)

[76]

Xu H S, Zhang J D, Jiang Y Z, Lu S L, Niu Y W, Dong J Y, Jin S W, Song F, Cao X Z, Qing C, et al. Fractal analysis of rat dermal tissue in the different injury states. Int Wound J 19(5): 1016–1022 (2022)

[77]

Lewczuk B, Szyryńska N. Field-emission scanning electron microscope as a tool for large-area and large-volume ultrastructural studies. Animals 11(12): 3390 (2021)

[78]

Baatsen P, Gabarre S, Vints K, Wouters R, Vandael D, Goodchild R, Munck S, Gounko N V. Preservation of fluorescence signal and imaging optimization for integrated light and electron microscopy. Front Cell Dev Biol 9: 737621 (2021)

[79]

Fincke J, Zhang X, Shin B, Ely G, Anthony B W. Quantitative sound speed imaging of cortical bone and soft tissue: Results from observational data sets. IEEE Trans Med Imag 41(3): 502–514 (2022)

[80]

Cheheltani R, McGoverin C M, Rao J, Vorp D A, Kiani M F, Pleshko N. Fourier transform infrared spectroscopy to quantify collagen and elastin in an in vitro model of extracellular matrix degradation in aorta. Analyst 139(12): 3039–3047 (2014)

[81]

Votteler M, Carvajal Berrio D A, Pudlas M, Walles H, Stock U A, Schenke-Layland K. Raman spectroscopy for the non-contact and non-destructive monitoring of collagen damage within tissues. J Biophotonics 5(1): 47–56 (2012)

[82]

Lin C X, Wan H P, Kaper H J, Sharma P K. A hyaluronic acid based lubricious coating for cardiovascular catheters. Tribol Int 151: 106495 (2020)

[83]

Wan H P, Lin C X, Kaper H J, Sharma P K. A polyethylene glycol functionalized hyaluronic acid coating for cardiovascular catheter lubrication. Mater Des 196: 109080 (2020)

[84]

Morais J M, Papadimitrakopoulos F, Burgess D J. Biomaterials/tissue interactions: Possible solutions to overcome foreign body response. AAPS J 12(2): 188–196 (2010)

[85]

Givens C, Tzima E. Endothelial mechanosignaling: Does one sensor fit all. Antioxid Redox Signal 25(7): 373–388 (2016)

[86]

Souilhol C, Serbanovic-Canic J, Fragiadaki M, Chico T J, Ridger V, Roddie H, Evans P C. Endothelial responses to shear stress in atherosclerosis: A novel role for developmental genes. Nat Rev Cardiol 17(1): 52–63 (2020)

[87]

Van der Heiden K, Gijsen F J H, Narracott A, Hsiao S, Halliday I, Gunn J, Wentzel J J, Evans P C. The effects of stenting on shear stress: relevance to endothelial injury and repair. Cardiovasc Res 99(2): 269–275 (2013)

[88]

Xanthis I, Souilhol C, Serbanovic-Canic J, Roddie H, Kalli A C, Fragiadaki M, Wong R, Shah D R, Askari J A, Canham L, et al. β1 integrin is a sensor of blood flow direction. J Cell Sci 132(11): jcs229542 (2019)

[89]

Janmey P A, Fletcher D A, Reinhart-King C A. Stiffness sensing by cells. Physiol Rev 100(2): 695–724 (2020)

[90]

Yuan P, Hu Q Y, He X M, Long Y, Song X Q, Wu F, He Y Z, Zhou X Y. Laminar flow inhibits the Hippo/YAP pathway via autophagy and SIRT1-mediated deacetylation against atherosclerosis. Cell Death Dis 11(2): 141 (2020)

[91]

Tovar-Lopez F, Thurgood P, Gilliam C, Nguyen N, Pirogova E, Khoshmanesh K, Baratchi S. A microfluidic system for studying the effects of disturbed flow on endothelial cells. Front Bioeng Biotechnol 7: 81 (2019)

[92]

Gallo G, Volpe M, Savoia C. Endothelial dysfunction in hypertension: Current concepts and clinical implications. Front Med 8: 798958 (2022)

[93]

Ando J, Yamamoto K. Hemodynamic forces, endothelial mechanotransduction, and vascular diseases. Magn Reson Med Sci 21(2): 258–266 (2022)

[94]

Liu J, Cao P, Jiang Z, Zhao Y L, Cao R H. Numerical simulation on effects of embedded crack on rock fragmentation by a tunnel boring machine cutter. J Cent South Univ 21(8): 3302–3308 (2014)

[95]

Zeng, K, Qiao, A K. Comparative study on effects from three kinds of stents with different cross-section on aneurismal hemodynamics. J Med Biomech 27(2): 220–226 (2012)

[96]

Hawthorn A, Bulmer A C, Mosawy S, Keogh S. Implications for maintaining vascular access device patency and performance: Application of science to practice. J Vasc Access 20(5): 461–470 (2019)

[97]

Chistiakov D A, Orekhov A N, Bobryshev Y V. Effects of shear stress on endothelial cells: Go with the flow. Acta Physiol 219(2): 382–408 (2017)

[98]

Krüger-Genge A, Blocki A, Franke R P, Jung F. Vascular endothelial cell biology: An update. Int J Mol Sci 20(18): 4411 (2019)

[99]

Lin H L, Xu L N, Yu S J, Hong W J, Huang M D, Xu P. Therapeutics targeting the fibrinolytic system. Exp Mol Med 52(3): 367–379 (2020)

[100]

Marx S, Dal Maso T, Chen J W, Bury M, Wouters J, Michiels C, Le Calvé B. Transmembrane (TMEM) protein family members: Poorly characterized even if essential for the metastatic process. Semin Cancer Biol 60: 96–106 (2020)

[101]

Hayes V, Johnston I, Arepally G M, McKenzie S E, Cines D B, Rauova L, Poncz M. Endothelial antigen assembly leads to thrombotic complications in heparin-induced thrombocytopenia. J Clin Investig 127(3): 1090–1098 (2017)

[102]

Ramírez C M, Zhang X B, Bandyopadhyay C, Rotllan N, Sugiyama M G, Aryal B, Liu X R, He S, Kraehling J R, Ulrich V, et al. Caveolin-1 regulates atherogenesis by attenuating low-density lipoprotein transcytosis and vascular inflammation independently of endothelial nitric oxide synthase activation. Circulation 140(3): 225–239 (2019)

[103]

Brisbois E J, Handa H, Major T C, Bartlett R H, Meyerhoff M E. Long-term nitric oxide release and elevated temperature stability with S-nitroso-N-acetylpenicillamine (SNAP)-doped Elast-eon E2As polymer. Biomaterials 34(28): 6957–6966 (2013)

[104]

Brisbois E J, Davis R P, Jones A M, Major T C, Bartlett R H, Meyerhoff M E, Handa H. Reduction in thrombosis and bacterial adhesion with 7 day implantation of S-nitroso-N-acetylpenicillamine (SNAP)-doped Elast-eon E2As catheters in sheep. J Mater Chem B 3(8): 1639–1645 (2015)

[105]

Frank P G, Pavlides S, Lisanti M P. Caveolae and transcytosis in endothelial cells: Role in atherosclerosis. Cell and Tissue Res 335: 41–47 (2009)

[106]

Rajendran P, Rengarajan T, Thangavel J, Nishigaki Y, Sakthisekaran D, Sethi G, Nishigaki I. The vascular endothelium and human diseases. Int J Biol Sci 9(10): 1057–1069 (2013)

[107]

Theofilis P, Sagris M, Oikonomou E, Antonopoulos A S, Siasos G, Tsioufis C, Tousoulis D. Inflammatory mechanisms contributing to endothelial dysfunction. Biomedicines 9(7): 781 (2021)

[108]
Baim D, Simon D. Complications and the optimal use of adjunctive pharmacology. Grossman's cardiac catheterization, angiography, and intervention. Philadelphia: Lippincott Williams & Wilkins: 42–47 (2006)
[109]

Prokopovich P, Perni S, Piccirillo C, Pratten J, Parkin I P, Wilson M. Frictional properties of light-activated antimicrobial polymers in blood vessels. J Mater Sci Mater Med 21(2): 815–821 (2010)

[110]

Duta O C, Ţîţu A M, Marin A, Ficai A, Ficai D, Andronescu E. Surface modification of poly(vinylchloride) for manufacturing advanced catheters. Curr Med Chem 27(10): 1616–1633 (2020)

[111]

Olmos D, González-Benito J. Polymeric materials with antibacterial activity: A review. Polymers 13(4): 613 (2021)

[112]

Paxton N C, Allenby M C, Lewis P M, Woodruff M A. Biomedical applications of polyethylene. Eur Polym J 118: 412–428 (2019)

[113]

Ojha V, Raju S N, Deshpande A, Ganga K P, Kumar S. Catheters in vascular interventional radiology: An illustrated review. Diagn Interv Radiol 29(1): 138–145 (2023)

[114]

Teo A J T, Mishra A, Park I, Kim Y J, Park W T, Yoon Y J. Polymeric biomaterials for medical implants and devices. ACS Biomater Sci Eng 2(4): 454–472 (2016)

[115]

Vernerey F J, Lalitha Sridhar S, Muralidharan A, Bryant S J. Mechanics of 3D cell–hydrogel interactions: Experiments, models, and mechanisms. Chem Rev 121(18): 11085–11148 (2021)

[116]

Bonyadi S Z, Hasan M M, Kim J, Mahmood S, Schulze K D, Dunn A C. Review: Friction and lubrication with high water content crosslinked hydrogels. Tribol Lett 68(4): 119 (2020)

[117]

Dai S M, Gao Y, Duan L J. Recent advances in hydrogel coatings for urinary catheters. J Appl Polym Sci 140(14): e53701 (2023)

[118]

Correa S, Grosskopf A K, Lopez Hernandez H, Chan D, Yu A C, Stapleton L M, Appel E A. Translational applications of hydrogels. Chem Rev 121(18): 11385–11457 (2021)

[119]

Liu Q H, Nian G D, Yang C H, Qu S X, Suo Z G. Bonding dissimilar polymer networks in various manufacturing processes. Nat Commun 9: 846 (2018)

[120]

Li J Y, Mooney D J. Designing hydrogels for controlled drug delivery. Nat Rev Mater 1(12): 16071 (2016)

[121]

Milo S, Thet N T, Liu D, Nzakizwanayo J, Jones B V, Jenkins A T A. An in situ infection detection sensor coating for urinary catheters. Biosens Bioelectron 81: 166–172 (2016)

[122]

Li K, Pandiyarajan C K, Prucker O, Rühe| J. On the lubrication mechanism of surfaces covered with surface-attached hydrogels. Macromol Chem Phys 217(4): 526–536 (2016)

[123]

Yong Y, Qiao M Y, Chiu A, Fuchs S, Liu Q S, Pardo Y, Worobo R, Liu Z, Ma M L. Conformal hydrogel coatings on catheters to reduce biofouling. Langmuir 35(5): 1927–1934 (2019)

[124]

Parada G A, Yuk H, Liu X Y, Hsieh A J, Zhao X H. Impermeable robust hydrogels via hybrid lamination. Adv Healthc Mater 6(19): 1700520 (2017)

[125]

Bai M H, Zhao B S, Liu Z Y T, Zheng Z L, Wei X, Li L L, Li K, Song X R, Xu J Z, Li Z M. Mucosa-like conformal hydrogel coating for aqueous lubrication. Adv Mater 34(46): 2108848 (2022)

[126]

Wei Q B, Liu H, Zhao X D, Zhao W Y, Xu R N, Ma S H, Zhou F. Bio-inspired hydrogel-polymer brush bi-layered coating dramatically boosting the lubrication and wear-resistance. Tribol Int 177: 108000 (2023)

[127]

Huang L N, Li Z P, Ma S H, Ye D D, Yang J, Qin G, Yin H Y, Chen Q. Articular cartilage-inspired hybrid double-network hydrogels with a layered structure and low friction properties. ACS Appl Polym Mater 4(10): 7634–7644 (2022)

[128]

Liu J, Lin S T, Liu X Y, Qin Z, Yang Y Y, Zang J F, Zhao X H. Fatigue-resistant adhesion of hydrogels. Nat Commun 11: 1071 (2020)

[129]

Xu R N, Zhang Y L, Ma S H, Ma Z F, Yu B, Cai M R, Zhou F. A universal strategy for growing a tenacious hydrogel coating from a sticky initiation layer. Adv Mater 34(11): 2108889 (2022)

[130]

Xu R N, Hua M T, Wu S W, Ma S H, Zhang Y L, Zhang L Q, Yu B, Cai M R, He X M, Zhou F. Continuously growing multi-layered hydrogel structures with seamless interlocked interface. Matter 5(2): 634–653 (2022)

[131]

Wang Y H, Li Y, Meng K L, Man J, Li Y J, Chen H S. A critical review on anticoagulant coatings on cardiovascular implants in the past 10 years. Tribology 43(4): 446–468 (2022)

[132]

Chopra A M, Mehta M, Bismuth J, Shapiro M, Fishbein M C, Bridges A G, Vinters H V. Polymer coating embolism from intravascular medical devices: A clinical literature review. Cardiovasc Pathol 30: 45–54 (2017)

[133]

Chopra A M, Rapkiewicz A, Daggubati R, Sequeira A, Hu Y C, Bhatt D L, Sharma S K, Cruz J P, Tzafriri A R, Edelman E R. Analysis: Intravascular devices with a higher risk of polymer emboli: The need for particulate generation testing. Biomed Instrum Technol 54(1): 37–43 (2020)

[134]

Mehta R I, Mehta R I, Choi J M, Mukherjee A, Castellani R J. Hydrophilic polymer embolism and associated vasculopathy of the lung: Prevalence in a retrospective autopsy study. Hum Pathol 46(2): 191–201 (2015)

[135]

Grundeken M J, Li X F, Kurpershoek C E, Kramer M C, Vink A, Piek J J, Tijssen J G P, Koch K T, Wykrzykowska J J, de Winter R J, et al. Distal embolization of hydrophilic-coating material from coronary guidewires after percutaneous coronary interventions. Circ Cardiovasc Interv 8(2): e001816 (2015)

[136]

Chen Z H, Zhang Y, Wang C Y, Chen B. Understanding the cutting mechanisms of composite structured soft tissues. Int J Mach Tools Manuf 161: 103685 (2021)

[137]

Mehta R I, Mehta R I, Solis O E, Jahan R, Salamon N, Tobis J M, Yong W H, Vinters H V, Fishbein M C. Hydrophilic polymer emboli: An under-recognized iatrogenic cause of ischemia and infarct. Mod Pathol 23(7): 921–930 (2010)

[138]

Parada G, Yu Y, Riley W, Lojovich S, Tshikudi D, Ling Q, Zhang Y F, Wang J X, Ling L, Yang Y Y, et al. Ultrathin and robust hydrogel coatings on cardiovascular medical devices to mitigate thromboembolic and infectious complications. Adv Healthc Mater 9(20): 2001116 (2020)

[139]

Chen H, Xue H Q, Zeng H X, Dai M H, Tang C X, Liu L L. 3D printed scaffolds based on hyaluronic acid bioinks for tissue engineering: A review. Biomater Res 27(1): 137 (2023)

[140]

Ding Y W, Zhang X W, Mi C H, Qi X Y, Zhou J, Wei D X. Recent advances in hyaluronic acid-based hydrogels for 3D bioprinting in tissue engineering applications. Smart Mater Med 4: 59–68 (2023)

[141]

An Q, Huang T, Shi F. Covalent layer-by-layer films: Chemistry, design, and multidisciplinary applications. Chem Soc Rev 47(13): 5061–5098 (2018)

[142]

Wågberg L, Erlandsson J. The use of layer-by-layer self-assembly and nanocellulose to prepare advanced functional materials. Adv Mater 33(28): 2001474 (2021)

[143]

Zhu Y X, You X M, Ren J Y, Zhao Z G, Ge L Q. Self-healing polyelectrolyte multilayered coating for anticorrosion on carbon paper. J Colloid Interface Sci 493: 342–348 (2017)

[144]

Lai J C, Mei J F, Jia X Y, Li C H, You X Z, Bao Z N. A stiff and healable polymer based on dynamic-covalent boroxine bonds. Adv Mater 28(37): 8277–8282 (2016)

[145]

Chen J T, Fu Y J, An Q-F, Lo S C, Huang S H, Hung W S, Hu C C, Lee K R, Lai J Y. Tuning nanostructure of graphene oxide/polyelectrolyte LbL assemblies by controlling pH of GO suspension to fabricate transparent and super gas barrier films. Nanoscale 5(19): 9081 (2013)

[146]

Lin C X, Huang Z Y, Wu T T, Zhou X T, Zhao R F, Xu Z B. A chitosan and hyaluronic acid-modified layer-by-layer lubrication coating for cardiovascular catheter. Colloids Surf B Biointerfaces 217: 112687 (2022)

[147]

Asif S, Asawa K, Inoue Y, Ishihara K, Lindell B, Holmgren R, Nilsson B, Rydén A, Jensen-Waern M, Teramura Y, et al. Validation of an MPC polymer coating to attenuate surface-induced crosstalk between the complement and coagulation systems in whole blood in in vitro and in vivo models. Macromol Biosci 19(5): 1800485 (2019)

[148]

Kwaan H. Complications of implanted nonbiologic devices: An overview. Semin Thromb Hemost 44(1): 7–11 (2018)

[149]

Cohen H C, Joyce E J, Kao W J. Biomaterials selectively modulate interactions between human blood-derived polymorphonuclear leukocytes and monocytes. Am J Pathol 182(6): 2180–2190 (2013)

[150]

Eriksson O, Mohlin C, Nilsson B, Ekdahl K N. The human platelet as an innate immune cell: Interactions between activated platelets and the complement system. Front Immunol 10: 1590 (2019)

[151]

Carniello V, Peterson B W, van der Mei H C, Busscher H J. Physico-chemistry from initial bacterial adhesion to surface-programmed biofilm growth. Adv Colloid Interface Sci 261: 1–14 (2018)

[152]

Luan K, Ban Y, Shi D, Shi H C. Construction strategy and research progress of anticoagulant surface of medical polymeric materials. J Funct Polym 34(2): 172–181 (2021)

[153]

Dhingra S, Sharma S, Saha S. Infection resistant surface coatings by polymer brushes: Strategies to construct and applications. ACS Appl Bio Mater 5(4): 1364–1390 (2022)

[154]

Wang Y, Zhai W J, Cheng S J, Li J H, Zhang H Y. Surface-functionalized design of blood-contacting biomaterials for preventing coagulation and promoting hemostasis. Friction 11(8): 1371–1394 (2023)

[155]

Xing C M, Meng F N, Quan M, Ding K, Dang Y, Gong Y K. Quantitative fabrication, performance optimization and comparison of PEG and zwitterionic polymer antifouling coatings. Acta Biomater 59: 129–138 (2017)

[156]

Wang F, Zhang H, Yu B, Wang S, Shen Y Q, Cong H L. Review of the research on anti-protein fouling coatings materials. Prog Org Coat 147: 105860 (2020)

[157]

Chan Y M, Schweiss R, Werner C, Grunze M. Electrokinetic characterization of oligo- and poly(ethylene glycol)-terminated self-assembled monolayers on gold and glass surfaces. Langmuir 19(18): 7380–7385 (2003)

[158]

Zhang H B, Mu C A. Anti-fouling coatings of poly(dimethylsiloxane) devices for biological and biomedical applications. J Med Biol Eng 35(2): 143–155 (2015)

[159]

Ishihara K, Ueda T, Nakabayashi N. Preparation of phospholipid polymers and their properties as polymer hydrogel membranes. Polym J 22(5): 355–360 (1990)

[160]

Jeon S I, Lee J H, Andrade J D, De Gennes P G. Protein: Surface interactions in the presence of polyethylene oxide I. Simplified theory. J Colloid Interface Sci 142(1): 149–158 (1991)

[161]

Chen S F, Li L Y, Zhao C, Zheng J. Surface hydration: Principles and applications toward low-fouling/nonfouling biomaterials. Polymer 51(23): 5283–5293 (2010)

[162]

Boo C, Hong S, Elimelech M. Relating organic fouling in membrane distillation to intermolecular adhesion forces and interfacial surface energies. Environ Sci Technol 52(24): 14198–14207 (2018)

[163]

Wu J, Lin W F, Wang Z, Chen S F, Chang Y. Investigation of the hydration of nonfouling material poly(sulfobetaine methacrylate) by low-field nuclear magnetic resonance. Langmuir 28(19): 7436–7441 (2012)

[164]

Peng Z L, Ji C Y, Zhou Y Q, Zhao T S, Leblanc R M. Polyethylene glycol (PEG) derived carbon dots: Preparation and applications. Appl Mater Today 20: 100677 (2020)

[165]

Ahmad Parray Z, Hassan M I, Ahmad F, Islam A. Amphiphilic nature of polyethylene glycols and their role in medical research. Polym Test 82: 106316 (2020)

[166]

Zhi Z L, Su Y J, Xi Y W, Tian L, Xu M, Wang Q Q, Padidan S, Li P, Huang W. Dual-functional polyethylene glycol-b-polyhexanide surface coating with in vitro and in vivo antimicrobial and antifouling activities. ACS Appl Mater Interfaces 9(12): 10383–10397 (2017)

[167]

Schmitt S K, Xie A W, Ghassemi R M, Trebatoski D J, Murphy W L, Gopalan P. Polyethylene glycol coatings on plastic substrates for chemically defined stem cell culture. Adv Healthc Mater 4(10): 1555–1564 (2015)

[168]

Zhang Z Y, Wang J C, Tu Q, Nie N, Sha J, Liu W M, Liu R, Zhang Y R, Wang J Y. Surface modification of PDMS by surface-initiated atom transfer radical polymerization of water-soluble dendronized PEG methacrylate. Colloids Surf B Biointerfaces 88(1): 85–92 (2011)

[169]

Sugiura S, Edahiro J I, Sumaru K, Kanamori T. Surface modification of polydimethylsiloxane with photo-grafted poly(ethylene glycol) for micropatterned protein adsorption and cell adhesion. Colloids Surf B Biointerfaces 63(2): 301–305 (2008)

[170]

Zhang Y D, Zhang X, Zhao Y Q, Zhang X Y, Ding X K, Ding X J, Yu B R, Duan S, Xu F J. Self-adaptive antibacterial surfaces with bacterium-triggered antifouling-bactericidal switching properties. Biomater Sci 8(3): 997–1006 (2020)

[171]

Yang C, Ding X, Ono R J, Lee H, Hsu L Y, Tong Y W, Hedrick J, Yang Y Y. Brush-like polycarbonates containing dopamine, cations, and PEG providing a broad-spectrum, antibacterial, and antifouling surface via one-step coating. Adv Mater 26(43): 7346–7351 (2014)

[172]

Li L Y, Chen S F, Zheng J, Ratner B D, Jiang S Y. Protein adsorption on oligo(ethylene glycol)-terminated alkanethiolate self-assembled monolayers: the molecular basis for nonfouling behavior. J Phys Chem B 109(7): 2934–2941 (2005)

[173]

Chen D D, Wu M D, Li B C, Ren K F, Cheng Z K, Ji J, Li Y, Sun J Q. Layer-by-layer-assembled healable antifouling films. Adv Mater 27(39): 5882–5888 (2015)

[174]

Lee J, Kang D, Choi J, Huang W, Wadman M, Barron A E, Seo J. Effect of side chain hydrophobicity and cationic charge on antimicrobial activity and cytotoxicity of helical peptoids. Bioorg Med Chem Lett 28(2): 170–173 (2018)

[175]

Konradi R, Pidhatika B, Mühlebach A, Textor M. Poly-2-methyl-2-oxazoline: A peptide-like polymer for protein-repellent surfaces. Langmuir 24(3): 613–616 (2008)

[176]

Wyszogrodzka M, Haag R. Synthesis and characterization of glycerol dendrons, self-assembled monolayers on gold: A detailed study of their protein resistance. Biomacromolecules 10(5): 1043–1054 (2009)

[177]

Li Q, Wen C, Yang J, Zhou X, Zhu Y, Zheng J, Cheng G, Bai J, Xu T, Ji J, et al. Zwitterionic biomaterials. Chem Rev 122(23): 17073–17154 (2022)

[178]

Santonicola M G, Memesa M, Meszyńska A, Ma Y J, Vancso G J. Surface-grafted zwitterionic polymers as platforms for functional supported phospholipid membranes. Soft Matter 8(5): 1556–1562 (2012)

[179]

Kuo W H, Wang M J, Chien H W, Wei T C, Lee C, Tsai W B. Surface modification with Poly(sulfobetaine methacrylate-co-acrylic acid) to reduce fibrinogen adsorption, platelet adhesion, and plasma coagulation. Biomacromolecules 12(12): 4348–4356 (2011)

[180]

Liu S H, Tang J Y, Ji F Q, Lin W F, Chen S F. Recent advances in zwitterionic hydrogels: Preparation, property, and biomedical application. Gels 8(1): 46 (2022)

[181]

Zhang N, Weir M D, Romberg E, Bai Y X, Xu H H K. Development of novel dental adhesive with double benefits of protein-repellent and antibacterial capabilities. Dent Mater 31(7): 845–854 (2015)

[182]

Pranantyo D, Xu L Q, Neoh K G, Kang E-T, Ng Y X, Teo S L. Tea stains-inspired initiator primer for surface grafting of antifouling and antimicrobial polymer brush coatings. Biomacromolecules 16(3): 723–732 (2015)

[183]

Wang B L, Jin T W, Han Y M, Shen C H, Li Q, Lin Q K, Chen H. Bio-inspired terpolymers containing dopamine, cations and MPC: A versatile platform to construct a recycle antibacterial and antifouling surface. J Mater Chem B 3(27): 5501–5510 (2015)

[184]

Barthélémy B, Maheux S, Devillers S, Kanoufi F, Combellas C, Delhalle J, Mekhalif Z. Synergistic effect on corrosion resistance of phynox substrates grafted with surface-initiated ATRP (co)polymerization of 2-methacryloyloxyethyl phosphorylcholine (MPC) and 2-hydroxyethyl methacrylate (HEMA). ACS Appl Mater Interfaces 6(13): 10060–10071 (2014)

[185]

Cheng G, Li G Z, Xue H, Chen S F, Bryers J D, Jiang S Y. Zwitterionic carboxybetaine polymer surfaces and their resistance to long-term biofilm formation. Biomaterials 30(28): 5234–5240 (2009)

[186]

Yao M M, Sun X, Guo Z C, Zhao Z M, Yan Z J, Yao F L, Zhang H, Li J J. Bioinspired zwitterionic microgel-based coating: Controllable microstructure, high stability, and anticoagulant properties. Acta Biomater 151: 290–303 (2022)

[187]

Liu P M, Huang T, Liu P S, Shi S F, Chen Q, Li L, Shen J. Zwitterionic modification of polyurethane membranes for enhancing the anti-fouling property. J Colloid Interface Sci 480: 91–101 (2016)

[188]

Ga D H, Lim C M, Jang Y, Son T I, Han D K, Joung Y K. Surface-modifying effect of zwitterionic polyurethane oligomers complexed with metal ions on blood compatibility. Tissue Eng Regen Med 19(1): 35–47 (2022)

Friction
Article number: 9441003

{{item.num}}

Comments on this article

Go to comment

< Back to all reports

Review Status: {{reviewData.commendedNum}} Commended , {{reviewData.revisionRequiredNum}} Revision Required , {{reviewData.notCommendedNum}} Not Commended Under Peer Review

Review Comment

Close
Close
Cite this article:
Yuan H, Lin C, Wang C. Research progress of the interaction between blood vessels and intervention catheters and its surface modification. Friction, 2025, 13(7): 9441003. https://doi.org/10.26599/FRICT.2025.9441003

908

Views

177

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 26 April 2024
Revised: 22 July 2024
Accepted: 05 September 2024
Published: 05 June 2025
© The Author(s) 2025.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, http://creativecommons.org/licenses/by/4.0/).