Journal Home > Volume 4 , Issue 4

Subsurface exploration is one of the most ambitious scientific objectives of the Hayabusa2 mission. A small device called small carry-on impactor (SCI) was developed to create an artificial crater on the surface of asteroid Ryugu. This enables us to sample subsurface materials, which will provide a window to the past. The physical properties of the resulting crater are also useful for understanding the internal structure of Ryugu. Accurate understanding of the crater and ejecta properties, including the depth of excavation of subsurface materials, requires accurate information on impact conditions. In particular, the impact angle is a critical factor because it greatly influences the size and shape of the crater. On April 5, 2019, the Hayabusa2 spacecraft deployed the SCI at 500 m of altitude above the asteroid surface. The SCI gradually reduced its altitude, and it shot a 2 kg copper projectile into the asteroid 40 min after separation. Estimating the position of the released SCI is essential for determining the impact angle. This study describes the motion reconstruction of the SCI based on the actual operation data. The results indicate that the SCI was released with high accuracy.


menu
Abstract
Full text
Outline
About this article

Motion reconstruction of the small carry-on impactor aboard Hayabusa2

Japan Aerospace Exploration Agency, Sagamihara 252-5210, Japan
Chiba Institute of Technology, Narashino 275-0016, Japan
Kobe University, Kobe 657-8501, Japan
The Graduate University for Advanced Studies, Sagamihara 252-5210, Japan
Kochi University, Kochi 780-8520, Japan
IHI Aerospace Co., Ltd., Tomioka 370-2398, Japan
The University of Tokyo, Tokyo 113-0033, Japan
Nagoya University, Nagoya 464-8601, Japan

Abstract

Subsurface exploration is one of the most ambitious scientific objectives of the Hayabusa2 mission. A small device called small carry-on impactor (SCI) was developed to create an artificial crater on the surface of asteroid Ryugu. This enables us to sample subsurface materials, which will provide a window to the past. The physical properties of the resulting crater are also useful for understanding the internal structure of Ryugu. Accurate understanding of the crater and ejecta properties, including the depth of excavation of subsurface materials, requires accurate information on impact conditions. In particular, the impact angle is a critical factor because it greatly influences the size and shape of the crater. On April 5, 2019, the Hayabusa2 spacecraft deployed the SCI at 500 m of altitude above the asteroid surface. The SCI gradually reduced its altitude, and it shot a 2 kg copper projectile into the asteroid 40 min after separation. Estimating the position of the released SCI is essential for determining the impact angle. This study describes the motion reconstruction of the SCI based on the actual operation data. The results indicate that the SCI was released with high accuracy.

Keywords: small body exploration, Hayabusa2, kinetic impact, artificial crater, motion reconstruction

References(31)

[1]
Y. Tsuda,, M. Yoshikawa,, M. Abe,, H. Minamino,, S. Nakazawa, System design of the Hayabusa 2—Asteroid sample return mission to 1999 JU3. Acta Astronautica, 2013, 91: 356-362.
[2]
M. Yoshikawa,, S. Watanabe,, Y. Tsuda,, H. Kuninaka,, Hayabusa2 Project Team. Hayabusa2—The next asteroid sample return mission of Japan. Transactions of the Japan Society for Aeronautical & Space Science Aerospace Technology Japan, 2014, 12(ists29): 29-33.
[3]
J. Kawaguchi,, A. Fujiwara,, T. Uesugi, Hayabusa—Its technology and science accomplishment summary and Hayabusa-2. Acta Astronautica, 2008, 62(10-11): 639-647.
[4]
A. Fujiwara,, J. Kawaguchi,, D. K. Yeomans,, M. Abe,, T. Mukai,, T. Okada,, J. Saito,, H. Yano,, M. Yoshikawa,, D. J. Scheeres,, et al. The rubble-pile asteroid Itokawa as observed by Hayabusa. Science, 2006, 312(5778):1330-1334.
[5]
M. Abe,, Y. Takagi,, K. Kitazato,, S. Abe,, T. Hiroi,, F. Vilas,, B. E. Clark,, P. A. Abell,, S. M. Lederer,, K. S. Jarvis, et al. Near-infrared spectral results of asteroid Itokawa from the Hayabusa spacecraft. Science, 2006, 312(5778): 1334-1338.
[6]
J. Saito,, M. Miyamoto,, R. Nakamura,, M. Ishiguro,, T. Michikami,, A. M. Nakamura,, H. Demura,, S. Sasaki,, N. Hirata,, C. Honda,, H. Akiyama, Detailed images of asteroid 25143 Itokawa from Hayabusa. Science, 2006, 312(5778): 1341-1344.
[7]
H. Yano,, T. Kubota,, H. Miyamoto,, T. Okada,, D. Scheeres,, Y. Takagi,, K. Yoshida,, M. Abe,, S. Abe,, O. Barnouin-Jha,, et al. Touchdown of the Hayabusa spacecraft at the Muses sea on Itokawa. Science, 2006, 312(5778): 1350-1353.
[8]
H. Yurimoto,, K. Abe,, M. Abe,, M. Ebihara,, A. Fujimura,, M. Hashiguchi,, K. Hashizume,, T. R. Ireland,, S. Itoh,, J. Katayama,, et al. Oxygen isotopic compositions of asteroidal materials returned from Itokawa by the Hayabusa mission. Science, 2011, 333(6046): 1116-1119.
[9]
S. Watanabe,, M. Hirabayashi,, N. Hirata,, N. Hirata,, R. Noguchi,, Y. Shimaki,, H. Ikeda,, E. Tatsumi,, M. Yoshikawa,, S. Kikuchi,, et al. Hayabusa2 arrives at the carbonaceous asteroid 162173 Ryugu—A spinning top-shaped rubble pile. Science, 2019, 364(6437): 268-272.
[10]
T. Michikami,, C. Honda,, H. Miyamoto,, M. Hirabayashi,, A. Hagermann,, T. Irie,, K. Nomura,, C. M. Ernst,, M. Kawamura,, K. Sugimoto, Boulder size and shape distributions on asteroid Ryugu. Icarus, 2019, 331: 179-191.
[11]
S. Sugita,, R. Honda,, T. Morota,, S. Kameda,, H. Sawada,, E. Tatsumi,, M. Yamada,, C. Honda,, Y. Yokota,, T. Kouyama, The geomorphology, color, and thermal properties of Ryugu: Implications for parent-body processes. Science, 2019, 364(6437): eaaw0422.
[12]
K. Kitazato,, R. E. Milliken,, T. Iwata,, M. Abe,, M. Ohtake,, S. Matsuura,, T. Arai,, Y. Nakauchi,, T. Nakamura,, M. Matsuoka, The surface composition of asteroid 162173 Ryugu from Hayabusa2 near-infrared spectroscopy. Science, 2019, 364(6437): aav7432.
[13]
S. Tachibana,, M. Abe,, M. Arakawa,, M. Fujimoto,, Y. Iijima,, M. Ishiguro,, K. Kitazato,, N. Kobayashi,, N. Namiki,, T. Okada,, et al. Hayabusa2: Scientific importance of samples returned from C-type near-Earth asteroid (162173) 1999 JU3. Geochemical Journal, 2014, 48(6): 571-587.
[14]
T. Saiki,, H. Sawada,, C. Okamoto,, H. Yano,, Y. Takagi,, Y. Akahoshi,, M. Yoshikawa, Small carry-on impactor of Hayabusa2 mission. Acta Astronautica, 2013, 84: 227-236.
[15]
T. Saiki,, H. Imamura,, M. Arakawa,, K. Wada,, Y. Takagi,, M. Hayakawa,, K. Shirai,, H. Yano,, C. Okamoto, The small carry-on impactor (SCI) and the Hayabusa2 impact experiment. Space Science Reviews, 2017, 208(1-4): 165-186.
[16]
M. Arakawa,, K. Wada,, T. Saiki,, T. Kadono,, Y. Takagi,, K. Shirai,, C. Okamoto,, H. Yano,, M. Hayakawa,, S. Nakazawa,, et al. Scientific objectives of small carry-on impactor (SCI) and deployable camera 3 digital (DCAM3-D): Observation of an ejecta curtain and a crater formed on the surface of ryugu by an artificial high-velocity impact. Space Science Reviews, 2017, 208(1-4): 187-212.
[17]
H. Sawada,, K. Ogawa,, K. Shirai,, S. Kimura,, Y. Hiromori,, Y. Mimasu,, DCAM3 development team, deployable camera (DCAM3) system for observation of Hayabusa2 impact experiment. Space Science Reviews, 2017, 208: 143-164.
[18]
K. Ogawa,, K. Shirai,, H. Sawada,, M. Arakawa,, R. Honda,, K. Wada,, K. Ishibashi,, Y. Iijima,, N. Sakatani,, S. Nakazawa,, H. Hayakawa, System configuration and operation plan of Hayabusa2 DCAM3-D camera system for scientific observation during SCI impact experiment. Space Science Reviews, 2017, 208: 125-142.
[19]
K. Ishibashi,, K. Shirai,, K. Ogawa,, K. Wada,, R. Honda,, M. Arakawa,, N. Sakatani,, Y. Ikeda, Performance of Hayabusa2 DCAM3-D camera for short-range imaging of SCI and ejecta curtain generated from the artificial impact crater formed on asteroid 162137 Ryugu (1999 JU3). Space Science Reviews, 2017, 208: 213-238.
[20]
H. Sawada,, Y. Shirasawa,, N. Okuizumi, Development of IKAROS mission system to expand solar power sail. In: Proceedings of the 61st International Astronautical Congress, 2010: IAC-10.C2.2.10.
[21]
H. Sawada,, O. Mori,, N. Okuizumi,, Y. Shirasawa,, Y. Miyazaki,, M. Natori,, S. Matunaga,, H. Furuya,, H. Sakamoto, Mission report on the solar power sail deployment demonstration of IKAROS. In: Proceedings of the 52nd AIAA/ASME/ASCE/ AHS/ASC Structures, Structural Dynamics and Materials Conference, 2011: AIAA 2011-1887.
DOI
[22]
T. Saiki,, H. Imamura,, N. Sano,, H. Ohtsuka, Evaluation of the separation mechanism for a small carry-on impactor aboard Hayabusa2. Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, 2020, 18(1): 9-15.
[23]
F. Terui,, N. Ogawa,, Y. Mimasu,, S. Yasuda,, M. Uo, Guidance, navigation and control of Hayabusa2 in proximity of an asteroid. In: Proceedings of the 36th Annual AAS Guidance & Control Conference, 2013: AAS 13-094.
[24]
F. Terui,, N. Ogawa,, S. Kikuchi,, G. Ono,, Y. Mimasu,, K. Yoshikawa,, T. Saiki,, Y. Tsuda, GNC strategy and results of Hayabusa2 pinpoint touch Down operation. In: Proceedings of International Astronautical Congress, 2019: IAC-19,C1,7,2,x52912.
[25]
H. Suzuki,, M. Yamada,, T. Kouyama,, E. Tatsumi,, S. Kameda,, R. Honda,, H. Sawada,, N. Ogawa,, T. Morota,, C. Honda,, et al. Initial inflight calibration for Hayabusa2 optical navigation camera (ONC) for science observations of asteroid Ryugu. Icarus, 2018, 300: 341-359.
[26]
E. Tatsumi,, T. Kouyama,, H. Suzuki,, M. Yamada,, N. Sakatani,, S. Kameda,, Y. Yokota,, R. Honda,, T. Morota,, K. Moroi,, et al. Updated inflight calibration of Hayabusa2’s optical navigation camera (ONC) for scientific observations during the cruise phase. Icarus, 2019, 325: 153-195.
[27]
G. Ono,, F. Terui,, N. Ogawa,, Y. Mimasu,, K. Yoshikawa,, S. Yasuda,, K. Matsushima,, Y. Takei,, T. Saiki,, Y. Tsuda, GNC design and evaluation of Hayabusa2 descent operations. In: Proceedings of the 32nd International Symposium on Space Technology and Science, 2019: 2019-d-078.
[28]
G. Ono,, H. Ikeda,, N. Ogawa,, Y. Mimasu,, K. Yoshikawa,, F. Terui,, Y. Takei,, T. Saiki,, Y. Tsuda, Flight results of GNC system for artificial landmark acquisition in Hayabusa2 touchdown operation, In: Proceedings of 70th International Astronautical Congress, 2019: IAC-19-C1.7.1.
[29]
Y. Takei,, T. Takahashi,, T. Yamaguchi,, T. Saiki,, A. Miura,, H. Takeuchi,, Y. Tsuda, A hardware-in-the-loop simulator for deep space touchdown operation training of Hayabusa2. In: Proceedings of the 68th International Astronautical Congress, 2017: IAC-17-B6.3.1x40744.
[30]
T. Saiki,, Y. Takei,, T. Takahashi,, S. Kikuchi,, H. Sawada,, C. Hirose,, F. Terui,, N. Ogawa,, Y. Mimasu,, G. Ono,, et al. Overview of Hayabusa2 asteroid proximity operation planning and preliminary results. In: Proceedings of the 32nd International Symposium on Space Technology and Science, 2019: 2019-k-26.
[31]
A. Miura,, T. Yuto,, T. Yamaguchi,, T. Takahashi,, T. Saiki, Development and evaluation of the Ray-tracing software used in the hardware-in-the-loop simulator of Hayabusa2. JAXA Research and Development Report: Journal of Space Science Informatics Japan, 2019, 8(JAXA-RR-18-008): 27-41. (in Japanese)
Publication history
Copyright
Acknowledgements

Publication history

Received: 27 January 2020
Accepted: 26 March 2020
Published: 02 November 2020
Issue date: December 2020

Copyright

© Tsinghua University Press 2020

Acknowledgements

The authors would like to thank the Hayabusa2 team members for their efforts toward making our challenging mission successful and for supplying the data used in this study.

Return