AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Communication

Unipolar p-type monolayer WSe2 field-effect transistors with high current density and low contact resistance enabled by van der Waals contacts

Miaomiao Li1,2Xinyu Zhang1,2Zimei Zhang3Gang Peng4Zhihong Zhu1,2Jia Li3 ( )Shiqiao Qin1,2( )Mengjian Zhu1,2( )
College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel Nano-optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha 410073, China
Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, China
Hunan Key Laboratory of Two-Dimensional Materials and State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
College of Science & Hunan Key Laboratory of Extreme Matter and Applications, National University of Defense Technology, Changsha 410073, China
Show Author Information

Graphical Abstract

Monolayer WSe2 devices contacted by van der Waals (vdW) Pd electrodes demonstrate unipolar p-type field-effect transistor (FET) transport behavior with superior electrical performance. At room temperature, the on-state saturation hole current density of the 100 nm-long short channel devices approaches ~ 105 μA·μm–1 at source drain voltage of 1 V, with high on/off ratio over 107 and carrier mobility above 100 cm2·V–1·s–1.

Abstract

High-performance field-effect transistors (FETs) based on atomically thin two-dimensional (2D) semiconductors have demonstrated great promise in post-Moore integrated circuits. However, unipolar p-type 2D semiconductor transistors yet remain challenging and suffer from low saturation current density (less than 10 μA·μm–1) and high contact resistance (larger than 100 kΩ·μm), mainly limited by the Schottky barrier induced by the mismatch of the work-functions and the Fermi level pinning at the metal contact interfaces. Here, we overcome these two obstacles through van der Waals (vdW) integration of high work-function metal palladium (Pd) as the contacts onto monolayer WSe2 grown by chemical vapor deposition (CVD) method. We demonstrate unipolar p-type monolayer WSe2 FETs with superior device performance: room temperature on-state current density exceeding 100 μA·μm–1, contact resistance of 12 kΩ·μm, on/off ratio over 107, and field-effect hole mobility of ~ 103 cm2·V–1·s–1. Electrical transport measurements reveal that the Fermi level pinning effect is completely effectively eliminated in monolayer WSe2 with vdW Pd contacts, leading to a Schottky barrier-free Ohmic contact at the metal-semiconductor junctions. Combining the advantages of large-scale vdW contact strategy and CVD growth, our results pave the way for wafer-scale fabrication of complementary-metal-oxide-semiconductor (CMOS) logic circuits based on atomically thin 2D semiconductors.

Electronic Supplementary Material

Download File(s)
6942_ESM.pdf (2 MB)

References

[1]

Chhowalla, M.; Jena, D.; Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 2016, 1, 16052.

[2]

Akinwande, D.; Huyghebaert, C.; Wang, C. H.; Serna, M. I.; Goossens, S.; Li, L. J.; Wong, H. S. P.; Koppens, F. H. L. Graphene and two-dimensional materials for silicon technology. Nature 2019, 573, 507–518.

[3]

Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9, 768–779.

[4]

Liu, C. S.; Chen, H. W.; Wang, S. Y.; Liu, Q.; Jiang, Y. G.; Zhang, D. W.; Liu, M.; Zhou, P. Two-dimensional materials for next-generation computing technologies. Nat. Nanotechnol. 2020, 15, 545–557.

[5]

Das, S.; Sebastian, A.; Pop, E.; McClellan, C. J.; Franklin, A. D.; Grasser, T.; Knobloch, T.; Illarionov, Y.; Penumatcha, A. V.; Appenzeller, J. et al. Transistors based on two-dimensional materials for future integrated circuits. Nat. Electron. 2021, 4, 786–799.

[6]

Zhu, K. C.; Wen, C.; Aljarb, A. A.; Xue, F.; Xu, X. M.; Tung, V.; Zhang, X. X.; Alshareef, H. N.; Lanza, M. The development of integrated circuits based on two-dimensional materials. Nat. Electron. 2021, 4, 775–785.

[7]

Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

[8]

Desai, S. B.; Madhvapathy, S. R.; Sachid, A. B.; Llinas, J. P.; Wang, Q. X.; Ahn, G. H.; Pitner, G.; Kim, M. J.; Bokor, J.; Hu, C. M. et al. MoS2 transistors with 1-nanometer gate lengths. Science 2016, 354, 99–102.

[9]

Wu, F.; Tian, H.; Shen, Y.; Hou, Z.; Ren, J.; Gou, G. Y.; Sun, Y. B.; Yang, Y.; Ren, T. L. Vertical MoS2 transistors with sub-1-nm gate lengths. Nature 2022, 603, 259–264.

[10]

Jiang, J. F.; Xu, L.; Qiu, C. G.; Peng, L. M. Ballistic two-dimensional InSe transistors. Nature 2023, 616, 470–475.

[11]

Allain, A.; Kang, J. H.; Banerjee, K.; Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 2015, 14, 1195–1205.

[12]

Kim, C.; Moon, I.; Lee, D.; Choi, M. S.; Ahmed, F.; Nam, S.; Cho, Y.; Shin, H. J.; Park, S.; Yoo, W. J. Fermi level pinning at electrical metal contacts of monolayer molybdenum dichalcogenides. ACS Nano 2017, 11, 1588–1596.

[13]

Liu, X. C.; Choi, M. S.; Hwang, E.; Yoo, W. J.; Sun, J. Fermi level pinning dependent 2D semiconductor devices: Challenges and prospects. Adv. Mater. 2022, 34, 2108425.

[14]

Duerloo, K. A. N.; Li, Y.; Reed, E. J. Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers. Nat. Commun. 2014, 5, 4214.

[15]

Voiry, D.; Mohite, A.; Chhowalla, M. Phase engineering of transition metal dichalcogenides. Chem. Soc. Rev. 2015, 44, 2702–2712.

[16]

Kappera, R.; Voiry, D.; Yalcin, S. E.; Branch, B.; Gupta, G.; Mohite, A. D.; Chhowalla, M. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 2014, 13, 1128–1134.

[17]

Zhu, J. Q.; Wang, Z. C.; Yu, H.; Li, N.; Zhang, J.; Meng, J. L.; Liao, M. Z.; Zhao, J.; Lu, X. B.; Du, L. J. et al. Argon plasma induced phase transition in monolayer MoS2. J. Am. Chem. Soc. 2017, 139, 10216–10219.

[18]

Cho, S.; Kim, S.; Kim, J. H.; Zhao, J.; Seok, J.; Keum, D. H.; Baik, J.; Choe, D. H.; Chang, K. J.; Suenaga, K. et al. Phase patterning for ohmic homojunction contact in MoTe2. Science 2015, 349, 625–628.

[19]

Tan, Y.; Luo, F.; Zhu, M. J.; Xu, X. L.; Ye, Y.; Li, B.; Wang, G.; Luo, W.; Zheng, X. M.; Wu, N. N. et al. Controllable 2H-to-1T′ phase transition in few-layer MoTe2. Nanoscale 2018, 10, 19964–19971.

[20]

Wang, L.; Meric, I.; Huang, P. Y.; Gao, Q.; Gao, Y.; Tran, H.; Taniguchi, T.; Watanabe, K.; Campos, L. M.; Muller, D. A. et al. One-dimensional electrical contact to a two-dimensional material. Science 2013, 342, 614–617.

[21]

Cui, X.; Lee, G. H.; Kim, Y. D.; Arefe, G.; Huang, P. Y.; Lee, C. H.; Chenet, D. A.; Zhang, X.; Wang, L.; Ye, F. et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotechnol. 2015, 10, 534–540.

[22]

Cui, X.; Shih, E. M.; Jauregui, L. A.; Chae, S. H.; Kim, Y. D.; Li, B. C.; Seo, D.; Pistunova, K.; Yin, J.; Park, J. H. et al. Low-temperature ohmic contact to monolayer MoS2 by van der Waals bonded Co/h-BN electrodes. Nano Lett. 2017, 17, 4781–4786.

[23]

Zhu, M. J.; Luo, W.; Wu, N. N.; Zhang, X. A.; Qin, S. Q. Engineering few-layer MoTe2 devices by Co/hBN tunnel contacts. Appl. Phys. Lett. 2018, 112, 183102.

[24]

Wang, Y.; Kim, J. C.; Wu, R. J.; Martinez, J.; Song, X. J.; Yang, J.; Zhao, F.; Mkhoyan, A.; Jeong, H. Y.; Chhowalla, M. Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 2019, 568, 70–74.

[25]

Shen, P. C.; Su, C.; Lin, Y. X.; Chou, A. S.; Cheng, C. C.; Park, J. H.; Chiu, M. H.; Lu, A. Y.; Tang, H. L.; Tavakoli, M. M. et al. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 2021, 593, 211–217.

[26]

Li, W. S.; Gong, X. S.; Yu, Z. H.; Ma, L.; Sun, W. J.; Gao, S.; Köroğlu, Ç.; Wang, W. F.; Liu, L.; Li, T. T. et al. Approaching the quantum limit in two-dimensional semiconductor contacts. Nature 2023, 613, 274–279.

[27]

Wang, Y.; Chhowalla, M. Making clean electrical contacts on 2D transition metal dichalcogenides. Nat. Rev. Phys. 2022, 4, 101–112.

[28]

Wang, Y.; Kim, J. C.; Li, Y.; Ma, K. Y.; Hong, S.; Kim, M.; Shin, H. S.; Jeong, H. Y.; Chhowalla, M. P-type electrical contacts for 2D transition-metal dichalcogenides. Nature 2022, 610, 61–66.

[29]

Kong, L. G.; Zhang, X. D.; Tao, Q. Y.; Zhang, M. L.; Dang, W. Q.; Li, Z. W.; Feng, L. P.; Liao, L.; Duan, X. F.; Liu, Y. Doping-free complementary WSe2 circuit via van der Waals metal integration. Nat. Commun. 2020, 11, 1866.

[30]

Ma, L. K.; Wang, Y. L.; Liu, Y. Van der Waals contact for two-dimensional transition metal dichalcogenides. Chem. Rev. 2024, 124, 2583–2616.

[31]

Liu, Y.; Guo, J.; Zhu, E. B.; Liao, L.; Lee, S. J.; Ding, M. N.; Shakir, I.; Gambin, V.; Huang, Y.; Duan, X. F. Approaching the Schottky–Mott limit in van der Waals metal-semiconductor junctions. Nature 2018, 557, 696–700.

[32]

Zhang, Z. W.; Chen, P.; Yang, X. D.; Liu, Y.; Ma, H. F.; Li, J.; Zhao, B.; Luo, J.; Duan, X. D.; Duan, X. F. Ultrafast growth of large single crystals of monolayer WS2 and WSe2. Natl. Sci. Rev. 2020, 7, 737–744.

[33]

Zhang, Z. W.; Chen, P.; Duan, X. D.; Zang, K. T.; Luo, J.; Duan, X. F. Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science 2017, 357, 788–792.

[34]

Peng, G.; Yang, X.; Wang, S. Y.; Zhang, J. Y.; Qi, G. J.; Zhang, S.; Liu, K.; Zhu, Z. H.; Li, Z.; Wang, G. et al. Controllable epitaxial growth of MoSe2 bilayers with different stacking orders by reverse-flow chemical vapor deposition. ACS Appl. Mater. Interfaces 2020, 12, 23347–23355.

[35]

Yang, X.; Zhang, Q.; Song, Y. C.; Fan, Y. S.; He, Y. W.; Zhu, Z. H.; Bai, Z. Q.; Luo, Q.; Wang, G.; Peng, G. et al. High mobility two-dimensional bismuth oxyselenide single crystals with large grain size grown by reverse-flow chemical vapor deposition. ACS Appl. Mater. Interfaces 2021, 13, 49153–49162.

[36]

Sahin, H.; Tongay, S.; Horzum, S.; Fan, W.; Zhou, J.; Li, J.; Wu, J.; Peeters, F. M. Anomalous Raman spectra and thickness-dependent electronic properties of WSe2. Phys. Rev. B 2013, 87, 165409.

[37]

Shi, W.; Lin, M. L.; Tan, Q. H.; Qiao, X. F.; Zhang, J.; Tan, P. H. Raman and photoluminescence spectra of two-dimensional nanocrystallites of monolayer WS2 and WSe2. 2D Mater. 2016, 3, 025016.

[38]

Yan, T. F.; Qiao, X. F.; Liu, X. N.; Tan, P. H.; Zhang, X. H. Photoluminescence properties and exciton dynamics in monolayer WSe2. Appl. Phys. Lett. 2014, 105, 101901.

[39]

Sui, F. R.; Li, H. Y.; Qi, R. J.; Jin, M.; Lv, Z. W.; Wu, M. H.; Liu, X. C.; Zheng, Y. F.; Liu, B. T.; Ge, R. et al. Atomic-level polarization reversal in sliding ferroelectric semiconductors. Nat. Commun. 2024, 15, 3799.

[40]

Lee, S.; Tang, A.; Aloni, S.; Philip Wong, H. S. Statistical study on the schottky barrier reduction of tunneling contacts to CVD synthesized MoS2. Nano Lett. 2016, 16, 276–281.

[41]

Wang, W. Y.; Liu, Y. W.; Tang, L.; Jin, Y. B.; Zhao, T. T.; Xiu, F. Controllable Schottky barriers between MoS2 and permalloy. Sci. Rep. 2014, 4, 6928.

[42]

Chen, C. H.; Wu, C. L.; Pu, J.; Chiu, M. H.; Kumar, P.; Takenobu, T.; Li, L. J. Hole mobility enhancement and p-doping in monolayer WSe2 by gold decoration. 2D Mater. 2014, 1, 034001.

[43]

Fang, H.; Chuang, S.; Chang, T. C.; Takei, K.; Takahashi, T.; Javey, A. High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett. 2012, 12, 3788–3792.

[44]

Yamamoto, M.; Nakaharai, S.; Ueno, K.; Tsukagoshi, K. Self-limiting oxides on WSe2 as controlled surface acceptors and low-resistance hole contacts. Nano Lett. 2016, 16, 2720–2727.

[45]

Movva, H. C. P.; Rai, A.; Kang, S.; Kim, K.; Fallahazad, B.; Taniguchi, T.; Watanabe, K.; Tutuc, E.; Banerjee, S. K. High-mobility holes in dual-gated WSe2 field-effect transistors. ACS Nano 2015, 9, 10402–10410.

[46]

Zhang, R.; Drysdale, D.; Koutsos, V.; Cheung, R. Controlled layer thinning and p-type doping of WSe2 by vapor XeF2. Adv. Funct. Mater. 2017, 27, 1702455.

[47]

Chuang, H. J.; Tan, X. B.; Ghimire, N. J.; Perera, M. M.; Chamlagain, B.; Cheng, M. M. C.; Yan, J. Q.; Mandrus, D.; Tománek, D.; Zhou, Z. X. High mobility WSe2 p- and n-type field-effect transistors contacted by highly doped graphene for low-resistance contacts. Nano Lett. 2014, 14, 3594–3601.

[48]

Shokouh, S. H. H.; Jeon, P. J.; Pezeshki, A.; Choi, K.; Lee, H. S.; Kim, J. S.; Park, E. Y.; Im, S. High-performance, air-stable, top-gate, p-channel WSe2 field-effect transistor with fluoropolymer buffer layer. Adv. Funct. Mater. 2015, 25, 7208–7214.

[49]

Kwon, G.; Choi, Y. H.; Lee, H.; Kim, H. S.; Jeong, J.; Jeong, K.; Baik, M.; Kwon, H.; Ahn, J.; Lee, E. et al. Interaction- and defect-free van der Waals contacts between metals and two-dimensional semiconductors. Nat. Electron. 2022, 5, 241–247.

[50]

Oberoi, A.; Han, Y.; Stepanoff, S. P.; Pannone, A.; Sun, Y. W.; Lin, Y. C.; Chen, C.; Shallenberger, J. R.; Zhou, D.; Terrones, M. et al. Toward high-performance p-type two-dimensional field effect transistors: Contact engineering, scaling, and doping. ACS Nano 2023, 17, 19709–19723.

[51]

Vu, V. T.; Vu, T. T. H.; Phan, T. L.; Kang, W. T.; Kim, Y. R.; Tran, M. D.; Nguyen, H. T. T.; Lee, Y. H.; Yu, W. J. One-step synthesis of NbSe2/Nb-Doped-WSe2 metal/doped-semiconductor van der Waals heterostructures for doping controlled ohmic contact. ACS Nano 2021, 15, 13031–13040.

[52]

Dorow, C.; O’Brien, K.; Naylor, C. H.; Lee, S.; Penumatcha, A.; Hsiao, A.; Tronic, T.; Christenson, M.; Maxey, K.; Zhu, H. et al. Advancing monolayer 2-D nMOS and pMOS transistor integration from growth to van der Waals interface engineering for ultimate CMOS scaling. IEEE Trans. Electron Devices 2021, 68, 6592–6598.

[53]

Pang, C. S.; Hung, T. Y. T.; Khosravi, A.; Addou, R.; Wang, Q. X.; Kim, M. J.; Wallace, R. M.; Chen, Z. H. Atomically controlled tunable doping in high-performance WSe2 devices. Adv. Electron. Mater. 2020, 6, 1901304.

[54]

Zhang, X. K.; Kang, Z.; Gao, L.; Liu, B. S.; Yu, H. H.; Liao, Q. L.; Zhang, Z.; Zhang, Y. Molecule-upgraded van der Waals contacts for schottky-barrier-free electronics. Adv. Mater. 2021, 33, 2104935.

[55]

Yang, S.; Lee, G.; Kim, J. Selective p-doping of 2D WSe2 via UV/ozone treatments and its application in field-effect transistors. ACS Appl. Mater. Interfaces 2021, 13, 955–961.

[56]
Lan, H. Y.; Tripathi, R.; Liu, X. K.; Appenzeller, J.; Chen, Z. H. Wafer-scale CVD monolayer WSe2 p-FETs with record-high 727 μA/μm Ion and 490 μS/ μm gmax via hybrid charge transfer and molecular doping. In Proceedings 2023 International Electron Devices Meeting (IEDM), San Francisco, USA, 2023, pp 1–4.
[57]

Cai, L. L.; McClellan, C. J.; Koh, A. L.; Li, H.; Yalon, E.; Pop, E.; Zheng, X. L. Rapid flame synthesis of atomically thin MoO3 down to monolayer thickness for effective hole doping of WSe2. Nano Lett. 2017, 17, 3854–3861.

[58]

Zhao, P. D.; Kiriya, D.; Azcatl, A.; Zhang, C. X.; Tosun, M.; Liu, Y. S.; Hettick, M.; Kang, J. S.; McDonnell, S.; Kc, S. et al. Air stable p-doping of WSe2 by covalent functionalization. ACS Nano 2014, 8, 10808–10814.

[59]

Kim, K. H.; Song, S.; Kim, B.; Musavigharavi, P.; Trainor, N.; Katti, K.; Chen, C.; Kumari, S.; Zheng, J.; Redwing, J. M. et al. Tuning polarity in WSe2/AlScN FeFETs via contact engineering. ACS Nano 2024, 18, 4180–4188.

[60]

Chiang, C. C.; Lan, H. Y.; Pang, C. S.; Appenzeller, J.; Chen, Z. H. Air-stable p-doping in record high-performance monolayer WSe2 devices. IEEE Electron Device Lett. 2022, 43, 319–322.

[61]

Kozhakhmetov, A.; Stolz, S.; Tan, A. M. Z.; Pendurthi, R.; Bachu, S.; Turker, F.; Alem, N.; Kachian, J.; Das, S.; Hennig, R. G. et al. Controllable p-type doping of 2D WSe2 via vanadium substitution. Adv. Funct. Mater. 2021, 31, 2105252.

[62]

Kozhakhmetov, A.; Schuler, B.; Tan, A. M. Z.; Cochrane, K. A.; Nasr, J. R.; El-Sherif, H.; Bansal, A.; Vera, A.; Bojan, V.; Redwing, J. M. et al. Scalable substitutional re-doping and its impact on the optical and electronic properties of tungsten diselenide. Adv. Mater. 2020, 32, 2005159.

[63]

Zhang, X. T.; Zhang, F.; Wang, Y. X.; Schulman, D. S.; Zhang, T. Y.; Bansal, A.; Alem, N.; Das, S.; Crespi, V. H.; Terrones, M. et al. Defect-controlled nucleation and orientation of WSe2 on hBN: A route to single-crystal epitaxial monolayers. ACS Nano 2019, 13, 3341–3352.

[64]

Liu, B. L.; Fathi, M.; Chen, L.; Abbas, A.; Ma, Y. Q.; Zhou, C. W. Chemical vapor deposition growth of monolayer WSe2 with tunable device characteristics and growth mechanism study. ACS Nano 2015, 9, 6119–6127.

[65]

Kozhakhmetov, A.; Nasr, J. R.; Zhang, F.; Xu, K.; Briggs, N. C.; Addou, R.; Wallace, R.; Fullerton-Shirey, S. K.; Terrones, M.; Das, S. et al. Scalable BEOL compatible 2D tungsten diselenide. 2D Mater. 2019, 7, 015029.

[66]

Smyth, C. M.; Walsh, L. A.; Bolshakov, P.; Catalano, M.; Addou, R.; Wang, L. H.; Kim, J.; Kim, M. J.; Young, C. D.; Hinkle, C. L. et al. Engineering the palladium-WSe2 interface chemistry for field effect transistors with high-performance hole contacts. ACS Appl. Nano Mater. 2019, 2, 75–88.

[67]

Yang, X. D.; Li, J.; Song, R.; Zhao, B.; Tang, J. M.; Kong, L. G.; Huang, H.; Zhang, Z. W.; Liao, L.; Liu, Y. et al. Highly reproducible van der Waals integration of two-dimensional electronics on the wafer scale. Nat. Nanotechnol. 2023, 18, 471–478.

[68]

Kong, L. G.; Wu, R. X.; Chen, Y.; Huangfu, Y.; Liu, L. T.; Li, W.; Lu, D. L.; Tao, Q. Y.; Song, W. J.; Li, W. Y. et al. Wafer-scale and universal van der Waals metal semiconductor contact. Nat. Commun. 2023, 14, 1014.

Nano Research
Pages 10162-10169
Cite this article:
Li M, Zhang X, Zhang Z, et al. Unipolar p-type monolayer WSe2 field-effect transistors with high current density and low contact resistance enabled by van der Waals contacts. Nano Research, 2024, 17(11): 10162-10169. https://doi.org/10.1007/s12274-024-6942-5
Topics:

787

Views

1

Crossref

1

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 28 June 2024
Revised: 28 July 2024
Accepted: 06 August 2024
Published: 27 August 2024
© Tsinghua University Press 2024
Return