AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (4.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Recent advances in small-scale hydrogel-based robots for adaptive biomedical applications

Mingzhe NieQilong ZhaoXuemin Du( )
Institute of Biomedical & Health Engineering, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China
Show Author Information

Graphical Abstract

Small-scale hydrogel-based robots possess unique adaptivity, which can be widely used for various biomedical applications, such as cell capture, target drug delivery, biopsy, minimally invasive surgery, and neural stimulation.

Abstract

Small-scale robots, ranging in size from micrometers to centimeters, have gained significant attention in the biomedical field. However, conventional small-scale robots made of rigid materials encounter challenges in adapting themselves to the soft tissues and complicated environments of human body. Compared to the rigid counterpart, small-scale hydrogel-based robots hold great promises due to their tissue-like low modulus, outstanding biocompatibility and accessible stimuli-responsive capabilities. These attributes offer small-scale hydrogel-based robots with multimodal locomotion and reinforced functions, further enhancing the adaptability in manipulation and tasks execution for various biomedical applications. In this review, we present recent advances in small-scale hydrogel-based robots. We first summarize the design principles of small-scale hydrogel-based robots including materials, fabrication techniques and manipulation strategies, then highlighting their upgraded functions and adaptive biomedical applications. Finally, we discuss existing challenges and future perspectives for small-scale hydrogel-based robots.

References

[1]

Palagi, S.; Fischer, P. Bioinspired microrobots. Nat. Rev. Mater. 2018, 3, 113–124.

[2]

Hu, W. Q.; Lum, G. Z.; Mastrangeli, M.; Sitti, M. Small-scale soft-bodied robot with multimodal locomotion. Nature 2018, 554, 81–85.

[3]

Nocentini, S.; Parmeggiani, C.; Martella, D.; Wiersma, D. S. Optically driven soft micro robotics. Adv. Opt. Mater. 2018, 6, 1800207.

[4]

Chen, Y. H.; Yang, J. J.; Zhang, X.; Feng, Y. Y.; Zeng, H.; Wang, L.; Feng, W. Light-driven bimorph soft actuators: Design, fabrication, and properties. Mater. Horiz. 2021, 8, 728–757.

[5]

Wang, B.; Kostarelos, K.; Nelson, B. J.; Zhang, L. Trends in micro-/nanorobotics: Materials development, actuation, localization, and system integration for biomedical applications. Adv. Mater. 2021, 33, 2002047.

[6]

Park, J.; Kim, J. Y.; Pané, S.; Nelson, B. J.; Choi, H. Acoustically mediated controlled drug release and targeted therapy with degradable 3D porous magnetic microrobots. Adv. Healthc. Mater. 2021, 10, 2001096.

[7]

Chen, X. Z.; Jang, B.; Ahmed, D.; Hu, C. Z.; De Marco, C.; Hoop, M.; Mushtaq, F.; Nelson, B. J.; Pané, S. Small-scale machines driven by external power sources. Adv. Mater. 2018, 30, 1705061.

[8]

Ceylan, H.; Dogan, N. O.; Yasa, I. C.; Musaoglu, M. N.; Kulali, Z. U.; Sitti, M. 3D printed personalized magnetic micromachines from patient blood-derived biomaterials. Sci. Adv. 2021, 7, eabh0273.

[9]

Kim, Y.; Zhao, X. H. Magnetic soft materials and robots. Chem. Rev. 2022, 122, 5317–5364.

[10]

Lee, Y.; Song, W. J.; Sun, J. Y. Hydrogel soft robotics. Mater. Today Phys. 2020, 15, 100258.

[11]

Zhang, Y. L.; Zhang, Y. P.; Han, Y. Q.; Gong, X. Micro/nanorobots for medical diagnosis and disease treatment. Micromachines 2022, 13, 648.

[12]

Cui, J. Z.; Huang, T. Y.; Luo, Z. C.; Testa, P.; Gu, H. R.; Chen, X. Z.; Nelson, B. J.; Heyderman, L. J. Nanomagnetic encoding of shape-morphing micromachines. Nature 2019, 575, 164–168.

[13]

Lee, Y.; Koehler, F.; Dillon, T.; Loke, G.; Kim, Y.; Marion, J.; Antonini, M. J.; Garwood, I. C.; Sahasrabudhe, A.; Nagao, K. et al. Magnetically actuated fiber-based soft robots. Adv. Mater 2023, 35, 2301916.

[14]

Chen, Y. Y.; Chen, D. X.; Liang, S. Z.; Dai, Y. G.; Bai, X.; Song, B.; Zhang, D. Y.; Chen, H. W.; Feng, L. Recent advances in field-controlled micro-nano manipulations and micro-nano robots. Adv. Intell. Syst. 2022, 4, 2100116.

[15]

Cianchetti, M.; Laschi, C.; Menciassi, A.; Dario, P. Biomedical applications of soft robotics. Nat. Rev. Mater. 2018, 3, 143–153.

[16]

Soto, F.; Wang, J.; Ahmed, R.; Demirci, U. Medical micro/nanorobots in precision medicine. Adv. Sci. 2020, 7, 2002203.

[17]

Brown, T. E.; Anseth, K. S. Spatiotemporal hydrogel biomaterials for regenerative medicine. Chem. Soc. Rev. 2017, 46, 6532–6552.

[18]

Wu, Z. G.; Troll, J.; Jeong, H. H.; Wei, Q.; Stang, M.; Ziemssen, F.; Wang, Z. G.; Dong, M. D.; Schnichels, S.; Qiu, T. et al. A swarm of slippery micropropellers penetrates the vitreous body of the eye. Sci. Adv. 2018, 4, eaat4388.

[19]

Wu, Z. G.; Li, L.; Yang, Y. R.; Hu, P.; Li, Y.; Yang, S. Y.; Wang, L. V.; Gao, W. A microrobotic system guided by photoacoustic computed tomography for targeted navigation in intestines in vivo. Sci. Robot. 2019, 4, eaax0613.

[20]

Chen, M. L.; Lin, Z. H.; Xuan, M. J.; Lin, X. K.; Yang, M. C.; Dai, L. R.; He, Q. Programmable dynamic shapes with a swarm of light-powered colloidal motors. Angew. Chem., Int. Ed. 2021, 60, 16674–16679.

[21]

Liu, X. Y.; Liu, J.; Lin, S. T.; Zhao, X. H. Hydrogel machines. Mater. Today 2020, 36, 102–124.

[22]

Apsite, I.; Salehi, S.; Ionov, L. Materials for smart soft actuator systems. Chem. Rev. 2022, 122, 1349–1415.

[23]

Ni, B.; Chen, H.; Zhang, M. X.; Keller, P.; Tatoulian, M.; Li, M. H. Thermo-mechanical and photo-luminescence properties of micro-actuators made of liquid crystal elastomers with cyano-oligo (p-phenylene vinylene) crosslinking bridges. Mater. Chem. Front. 2019, 3, 2499–2506.

[24]

Wang, Y. L.; Cui, H. Q.; Zhao, Q. L.; Du, X. M. Chameleon-inspired structural-color actuators. Matter 2019, 1, 626–638.

[25]

Xia, Y. L.; He, Y.; Zhang, F. H.; Liu, Y. J.; Leng, J. S. A review of shape memory polymers and composites: Mechanisms, materials, and applications. Adv. Mater. 2021, 33, 2000713.

[26]

Hines, L.; Petersen, K.; Lum, G. Z.; Sitti, M. Soft actuators for small-scale robotics. Adv. Mater. 2017, 29, 1603483.

[27]

Zhu, H.; Xu, B. R.; Wang, Y.; Pan, X. X.; Qu, Z. H.; Mei, Y. F. Self-powered locomotion of a hydrogel water strider. Sci. Robot. 2021, 6, eabe7925.

[28]

Li, C.; Iscen, A.; Palmer, L. C.; Schatz, G. C.; Stupp, S. I. Light-driven expansion of spiropyran hydrogels. J. Am. Chem. Soc. 2020, 142, 8447–8453.

[29]

Banisadr, S.; Chen, J. Infrared actuation-induced simultaneous reconfiguration of surface color and morphology for soft robotics. Sci. Rep. 2017, 7, 17521.

[30]

Choe, A.; Yeom, J.; Kwon, Y.; Lee, Y.; Shin, Y. E.; Kim, J.; Ko, H. Stimuli-responsive micro/nanoporous hairy skin for adaptive thermal insulation and infrared camouflage. Mater. Horiz. 2020, 7, 3258–3265.

[31]

Erol, O.; Pantula, A.; Liu, W. Q.; Gracias, D. H. Transformer hydrogels: A review. Adv. Mater. Technol. 2019, 4, 1900043.

[32]

Jeon, S. J.; Hauser, A. W.; Hayward, R. C. Shape-morphing materials from stimuli-responsive hydrogel hybrids. Acc. Chem. Res. 2017, 50, 161–169.

[33]

Ding, M.; Jing, L.; Yang, H.; Machnicki, C. E.; Fu, X.; Li, K.; Wong, I. Y.; Chen, P. Y. Multifunctional soft machines based on stimuli-responsive hydrogels: From freestanding hydrogels to smart integrated systems. Mater. Today Adv. 2020, 8, 100088.

[34]

Jiao, D. J.; Zhu, Q. L.; Li, C. Y.; Zheng, Q.; Wu, Z. L. Programmable morphing hydrogels for soft actuators and robots: From structure designs to active functions. Acc. Chem. Res. 2022, 55, 1533–1545.

[35]

Li, L.; Scheiger, J. M.; Levkin, P. A. Design and applications of photoresponsive hydrogels. Adv. Mater. 2019, 31, 1807333.

[36]

Dong, Y.; Wang, J.; Guo, X. K.; Yang, S. S.; Ozen, M. O.; Chen, P.; Liu, X.; Du, W.; Xiao, F.; Demirci, U. et al. Multi-stimuli-responsive programmable biomimetic actuator. Nat. Commun. 2019, 10, 4087.

[37]

Cai, L. J.; Wang, H.; Yu, Y. R.; Bian, F. K.; Wang, Y.; Shi, K. Q.; Ye, F. F.; Zhao, Y. J. Stomatocyte structural color-barcode micromotors for multiplex assays. Natl. Sci. Rev. 2020, 7, 644–651.

[38]

Ng, C. S. X.; Tan, M. W. M.; Xu, C. Y.; Yang, Z. L.; Lee, P. S.; Lum, G. Z. Locomotion of miniature soft robots. Adv. Mater. 2021, 33, 2003558.

[39]

Lin, X. Y.; Xu, B. R.; Zhu, H.; Liu, J. R.; Solovev, A.; Mei, Y. F. Requirement and development of hydrogel micromotors towards biomedical applications. Research 2020, 2020, 7659749.

[40]

Koleoso, M.; Feng, X.; Xue, Y.; Li, Q.; Munshi, T.; Chen, X. Micro/nanoscale magnetic robots for biomedical applications. Mater. Today Bio 2020, 8, 100085.

[41]

Accardo, J. V.; Kalow, J. A. Reversibly tuning hydrogel stiffness through photocontrolled dynamic covalent crosslinks. Chem. Sci. 2018, 9, 5987–5993.

[42]

Nie, M. Z.; Huang, C.; Du, X. M. Recent advances in colour-tunable soft actuators. Nanoscale 2021, 13, 2780–2791.

[43]

Bozuyuk, U.; Yasa, O.; Yasa, I. C.; Ceylan, H.; Kizilel, S.; Sitti, M. Light-triggered drug release from 3D-printed magnetic chitosan microswimmers. ACS Nano 2018, 12, 9617–9625.

[44]

Kim, D.; Jo, A.; Imani, K. B. C.; Kim, D.; Chung, J. W.; Yoon, J. Microfluidic fabrication of multistimuli-responsive tubular hydrogels for cellular scaffolds. Langmuir 2018, 34, 4351–4359.

[45]

Hu, N.; Wang, L. F.; Zhai, W. H.; Sun, M. M.; Xie, H.; Wu, Z. G.; He, Q. Magnetically actuated rolling of star-shaped hydrogel microswimmer. Macromol. Chem. Phys. 2018, 219, 1700540.

[46]

Hu, X. H.; Yasa, I. C.; Ren, Z. Y.; Goudu, S. R.; Ceylan, H.; Hu, W. Q.; Sitti, M. Magnetic soft micromachines made of linked microactuator networks. Sci. Adv. 2021, 7, eabe8436.

[47]

Kim, D. I.; Lee, H.; Kwon, S. H.; Choi, H.; Park, S. Magnetic nano-particles retrievable biodegradable hydrogel microrobot. Sens. Actuators B:Chem. 2019, 289, 65–77.

[48]

Hu, H.; Nie, M. Z.; Galluzzi, M.; Yu, X. F.; Du, X. M. Mimosa-inspired high-sensitive and multi-responsive starch actuators. Adv. Funct. Mater 2023, 2304634.

[49]

Wang, X. P.; Qin, X. H.; Hu, C. Z.; Terzopoulou, A.; Chen, X. Z.; Huang, T. Y.; Maniura-Weber, K.; Pané, S.; Nelson, B. J. 3D printed enzymatically biodegradable soft helical microswimmers. Adv. Funct. Mater. 2018, 28, 1804107.

[50]

Tang, J. P.; Yao, C.; Gu, Z.; Jung, S.; Luo, D.; Yang, D. Y. Super-soft and super-elastic DNA robot with magnetically driven navigational locomotion for cell delivery in confined space. Angew. Chem., Int. Ed. 2020, 59, 2490–2495.

[51]

Gervasoni, S.; Terzopoulou, A.; Franco, C.; Veciana, A.; Pedrini, N.; Burri, J. T.; De Marco, C.; Siringil, E. C.; Chen, X. Z.; Nelson, B. J. et al. CANDYBOTS: A new generation of 3D-printed sugar-based transient small-scale robots. Adv. Mater 2020, 32, 2005652.

[52]

Li, Z. W.; Myung, N. V.; Yin, Y. D. Light-powered soft steam engines for self-adaptive oscillation and biomimetic swimming. Sci. Robot. 2021, 6, eabi4523.

[53]

Xia, N.; Jin, B. W.; Jin, D. D.; Yang, Z. X.; Pan, C. F.; Wang, Q. Q.; Ji, F. T.; Iacovacci, V.; Majidi, C.; Ding, Y. et al. Decoupling and reprogramming the wiggling motion of midge larvae using a soft robotic platform. Adv. Mater. 2022, 34, 2109126.

[54]

Wu, S. W.; Hua, M. T.; Alsaid, Y.; Du, Y. J.; Ma, Y. F.; Zhao, Y. S.; Lo, C. Y.; Wang, C. R.; Wu, D.; Yao, B. W. et al. Poly (vinyl alcohol) hydrogels with broad-range tunable mechanical properties via the hofmeister effect. Adv. Mater. 2021, 33, 2007829.

[55]

Kim, D. I.; Lee, H.; Kwon, S. H.; Sung, Y. J.; Song, W. K.; Park, S. Bilayer hydrogel sheet-type intraocular microrobot for drug delivery and magnetic nanoparticles retrieval. Adv. Healthc. Mater. 2020, 9, 2000118.

[56]

Park, J.; Jin, C.; Lee, S.; Kim, J. Y.; Choi, H. Magnetically actuated degradable microrobots for actively controlled drug release and hyperthermia therapy. Adv. Healthc. Mater. 2019, 8, 1900213.

[57]

Huang, H. W.; Uslu, F. E.; Katsamba, P.; Lauga, E.; Sakar, M. S.; Nelson, B. J. Adaptive locomotion of artificial microswimmers. Sci. Adv. 2019, 5, eaau1532.

[58]

Zhao, X. H.; Kim, J.; Cezar, C. A.; Huebsch, N.; Lee, K.; Bouhadir, K.; Mooney, D. J. Active scaffolds for on-demand drug and cell delivery. Proc. Natl. Acad. Sci. USA 2011, 108, 67–72.

[59]

Sun, Z. F.; Yamauchi, Y.; Araoka, F.; Kim, Y. S.; Bergueiro, J.; Ishida, Y.; Ebina, Y.; Sasaki, T.; Hikima, T.; Aida, T. An anisotropic hydrogel actuator enabling earthworm-like directed peristaltic crawling. Angew. Chem., Int. Ed. 2018, 57, 15772–15776.

[60]

Mourran, A.; Zhang, H.; Vinokur, R.; Möller, M. Soft microrobots employing nonequilibrium actuation via plasmonic heating. Adv. Mater. 2017, 29, 1604825.

[61]

Xin, C.; Jin, D. D.; Hu, Y. L.; Yang, L.; Li, R.; Wang, L.; Ren, Z. G.; Wang, D. W.; Ji, S. Y.; Hu, K. et al. Environmentally adaptive shape-morphing microrobots for localized cancer cell treatment. ACS Nano 2021, 15, 18048–18059.

[62]

Lee, Y. W.; Chun, S.; Son, D.; Hu, X. H.; Schneider, M.; Sitti, M. A tissue adhesion-controllable and biocompatible small-scale hydrogel adhesive robot. Adv. Mater. 2022, 34, 2109325.

[63]

Hu, H.; Huang, C.; Galluzzi, M.; Ye, Q.; Xiao, R.; Yu, X. F.; Du, X. M. Editing the shape morphing of monocomponent natural polysaccharide hydrogel films. Research 2021, 2021, 9786128.

[64]

Du, X.; Cui, H.; Zhao, Q.; Wang, J.; Chen, H.; Wang, Y. Inside-out 3D reversible ion-triggered shape-morphing hydrogels. Research 2019, 2019, 6398296.

[65]

Wang, S. S.; Zhao, Q. L.; Li, J. H.; Du, X. M. Morphing-to-adhesion polysaccharide hydrogel for adaptive biointerfaces. ACS Appl. Mater. Interfaces 2022, 14, 42420–42429.

[66]

Zhang, S.; Ke, X. X.; Jiang, Q.; Chai, Z. P.; Wu, Z. G.; Ding, H. Fabrication and functionality integration technologies for small-scale soft robots. Adv. Mater. 2022, 34, 2200671.

[67]

Tasoglu, S.; Diller, E.; Guven, S.; Sitti, M.; Demirci, U. Untethered micro-robotic coding of three-dimensional material composition. Nat. Commun. 2014, 5, 3124.

[68]

Xie, M. H.; Zhang, W.; Fan, C. Y.; Wu, C.; Feng, Q. S.; Wu, J. J.; Li, Y. Z.; Gao, R.; Li, Z. G.; Wang, Q. G. et al. Bioinspired soft microrobots with precise magneto-collective control for microvascular thrombolysis. Adv. Mater. 2020, 32, 2000366.

[69]

Wu, Z. G.; Lin, X. K.; Zou, X.; Sun, J. M.; He, Q. Biodegradable protein-based rockets for drug transportation and light-triggered release. ACS Appl. Mater. Interfaces 2015, 7, 250–255.

[70]

Dong, M.; Wang, X. P.; Chen, X. Z.; Mushtaq, F.; Deng, S. Y.; Zhu, C. H.; Torlakcik, H.; Terzopoulou, A.; Qin, X. H.; Xiao, X. Z. et al. 3D-printed soft magnetoelectric microswimmers for delivery and differentiation of neuron-like cells. Adv. Funct. Mater. 2020, 30, 1910323.

[71]

Wallin, T. J.; Pikul, J.; Shepherd, R. F. 3D printing of soft robotic systems. Nat. Rev. Mater. 2018, 3, 84–100.

[72]

Peters, C.; Hoop, M.; Pané, S.; Nelson, B. J.; Hierold, C. Degradable magnetic composites for minimally invasive interventions: Device fabrication, targeted drug delivery, and cytotoxicity tests. Adv. Mater. 2016, 28, 533–538.

[73]

Llacer-Wintle, J.; Rivas-Dapena, A.; Chen, X. Z.; Pellicer, E.; Nelson, B. J.; Puigmarti-Luis, J.; Pané, S. Biodegradable small-scale swimmers for biomedical applications. Adv. Mater. 2021, 33, 2102049.

[74]

Adam, G.; Benouhiba, A.; Rabenorosoa, K.; Clévy, C.; Cappelleri, D. J. 4D printing:Enabling technology for microrobotics applications. Adv. Intell. Syst. 2021, 3, 2000216.

[75]

Champeau, M.; Heinze, D. A.; Viana, T. N.; De Souza, E. R.; Chinellato, A. C.; Titotto, S. 4D printing of hydrogels:A review. Adv. Funct. Mater. 2020, 30, 1910606.

[76]

Gao, C. Y.; Wang, Y.; Ye, Z. H.; Lin, Z. H.; Ma, X.; He, Q. Biomedical micro-/nanomotors: From overcoming biological barriers to in vivo imaging. Adv. Mater. 2021, 33, 2000512.

[77]

Dong, Y.; Wang, L.; Iacovacci, V.; Wang, X. P.; Zhang, L.; Nelson, B. J. Magnetic helical micro-/nanomachines: Recent progress and perspective. Matter 2022, 5, 77–109.

[78]

Zhou, H. J.; Mayorga-Martinez, C. C.; Pané, S.; Zhang, L.; Pumera, M. Magnetically driven micro and nanorobots. Chem. Rev. 2021, 121, 4999–5041.

[79]

Lahikainen, M.; Zeng, H.; Priimagi, A. Reconfigurable photoactuator through synergistic use of photochemical and photothermal effects. Nat. Commun. 2018, 9, 4148.

[80]

Tu, Y. F.; Peng, F.; Sui, X.; Men, Y.; White, P. B.; Van Hest, J. C. M.; Wilson, D. A. Self-propelled supramolecular nanomotors with temperature-responsive speed regulation. Nat. Chem. 2017, 9, 480–486.

[81]

Mou, F. Z.; Chen, C. R.; Zhong, Q.; Yin, Y. X.; Ma, H. R.; Guan, J. G. Autonomous motion and temperature-controlled drug delivery of Mg/Pt-poly(N-isopropylacrylamide) Janus micromotors driven by simulated body fluid and blood plasma. ACS Appl. Mater. Interfaces 2014, 6, 9897–9903.

[82]

Li, M. T.; Zhang, H.; Liu, M.; Dong, B. Motion-based glucose sensing based on a fish-like enzymeless motor. J. Mater. Chem. C 2017, 5, 4400–4407.

[83]

Soto, F.; Martin, A.; Ibsen, S.; Vaidyanathan, M.; Garcia-Gradilla, V.; Levin, Y.; Escarpa, A.; Esener, S. C.; Wang, J. Acoustic microcannons: Toward advanced microballistics. ACS Nano 2016, 10, 1522–1528.

[84]

Gelebart, A. H.; Jan Mulder, D.; Varga, M.; Konya, A.; Vantomme, G.; Meijer, E. W.; Selinger, R. L. B.; Broer, D. J. Making waves in a photoactive polymer film. Nature 2017, 546, 632–636.

[85]

Gan, T. S.; Shang, W. H.; Handschuh-Wang, S.; Zhou, X. C. Light-induced shape morphing of liquid metal nanodroplets enabled by polydopamine coating. Small 2019, 15, 1804838.

[86]

Sun, B. N.; Jia, R.; Yang, H.; Chen, X.; Tan, K.; Deng, Q.; Tang, J. D. Magnetic arthropod millirobots fabricated by 3D-printed hydrogels. Adv. Intell. Syst. 2022, 4, 2100139.

[87]

Kim, Y.; Parada, G. A.; Liu, S. D.; Zhao, X. H. Ferromagnetic soft continuum robots. Sci. Robot. 2019, 4, eaax7329.

[88]

Li, Z. G.; Li, Y. Z.; Chen, C.; Cheng, Y. Magnetic-responsive hydrogels: From strategic design to biomedical applications. J. Controlled Release 2021, 335, 541–556.

[89]

Liang, S. M.; Tu, Y. Q.; Chen, Q.; Jia, W.; Wang, W. H.; Zhang, L. D. Microscopic hollow hydrogel springs, necklaces and ladders: A tubular robot as a potential vascular scavenger. Mater. Horiz. 2019, 6, 2135–2142.

[90]

Liu, X. B.; Kent, N.; Ceballos, A.; Streubel, R.; Jiang, Y. F.; Chai, Y.; Kim, P. Y.; Forth, J.; Hellman, F.; Shi, S. W. et al. Reconfigurable ferromagnetic liquid droplets. Science 2019, 365, 264–267.

[91]

Sun, L. Y.; Chen, Z. Y.; Bian, F. K.; Zhao, Y. J. Bioinspired soft robotic caterpillar with cardiomyocyte drivers. Adv. Funct. Mater. 2020, 30, 1907820.

[92]

Sun, L. Y.; Yu, Y. R.; Chen, Z. Y.; Bian, F. K.; Ye, F. F.; Sun, L. Y.; Zhao, Y. J. Biohybrid robotics with living cell actuation. Chem. Soc. Rev. 2020, 49, 4043–4069.

[93]

Cvetkovic, C.; Raman, R.; Chan, V.; Williams, B. J.; Tolish, M.; Bajaj, P.; Sakar, M. S.; Asada, H. H.; Saif, M. T. A.; Bashir, R. Three-dimensionally printed biological machines powered by skeletal muscle. Proc. Natl. Acad. Sci. USA 2014, 111, 10125–10130.

[94]

Li, M. T.; Wang, X.; Dong, B.; Sitti, M. In-air fast response and high speed jumping and rolling of a light-driven hydrogel actuator. Nat. Commun. 2020, 11, 3988.

[95]

Zheng, Z. Q.; Wang, H. P.; Dong, L. X.; Shi, Q.; Li, J. N.; Sun, T.; Huang, Q.; Fukuda, T. Ionic shape-morphing microrobotic end-effectors for environmentally adaptive targeting, releasing, and sampling. Nat. Commun. 2021, 12, 411.

[96]

Huang, H. W.; Sakar, M. S.; Petruska, A. J.; Pané, S.; Nelson, B. J. Soft micromachines with programmable motility and morphology. Nat. Commun. 2016, 7, 12263.

[97]

Du, X. M.; Cui, H. Q.; Xu, T. T.; Huang, C. Y.; Wang, Y. L.; Zhao, Q. L.; Xu, Y. S.; Wu, X. Y. Reconfiguration, camouflage, and color-shifting for bioinspired adaptive hydrogel-based millirobots. Adv. Funct. Mater. 2020, 30, 1909202.

[98]

Shah, D.; Yang, B.; Kriegman, S.; Levin, M.; Bongard, J.; Kramer-Bottiglio, R. Shape changing robots: Bioinspiration, simulation, and physical realization. Adv. Mater. 2021, 33, 2002882.

[99]

Medina-Sánchez, M.; Magdanz, V.; Guix, M.; Fomin, V. M.; Schmidt, O. G. Swimming microrobots: Soft, reconfigurable, and smart. Adv. Funct. Mater. 2018, 28, 1707228.

[100]

Sun, M. M.; Tian, C. Y.; Mao, L. Y.; Meng, X. H.; Shen, X. J.; Hao, B.; Wang, X.; Xie, H.; Zhang, L. Reconfigurable magnetic slime robot: Deformation, adaptability, and multifunction. Adv. Funct. Mater. 2022, 32, 2112508.

[101]

Manzari, M. T.; Shamay, Y.; Kiguchi, H.; Rosen, N.; Scaltriti, M.; Heller, D. A. Targeted drug delivery strategies for precision medicines. Nat. Rev. Mater. 2021, 6, 351–370.

[102]

Cai, L. J.; Zhao, C.; Chen, H. X.; Fan, L.; Zhao, Y. J.; Qian, X. Y.; Chai, R. J. Suction-cup-inspired adhesive micromotors for drug delivery. Adv. Sci. 2022, 9, 2103384.

[103]

Chen, H.; Zhang, H. M.; Xu, T. T.; Yu, J. F. An overview of micronanoswarms for biomedical applications. ACS Nano 2021, 15, 15625–15644.

[104]

Ceylan, H.; Yasa, I. C.; Yasa, O.; Tabak, A. F.; Giltinan, J.; Sitti, M. 3d-printed biodegradable microswimmer for theranostic cargo delivery and release. ACS Nano 2019, 13, 3353–3362.

[105]

Zhang, X. X.; Chen, G. P.; Fu, X.; Wang, Y. T.; Zhao, Y. J. Magneto-responsive microneedle robots for intestinal macromolecule delivery. Adv. Mater. 2021, 33, 2104932.

[106]

Li, H.; Go, G.; Ko, S. Y.; Park, J. O.; Park, S. Magnetic actuated pH-responsive hydrogel-based soft micro-robot for targeted drug delivery. Smart Mater. Struct. 2016, 25, 027001.

[107]

Xu, B.; Han, X.; Hu, Y.; Luo, Y.; Chen, C. H.; Chen, Z.; Shi, P. A remotely controlled transformable soft robot based on engineered cardiac tissue construct. Small 2019, 15, 1900006.

[108]

Wei, T. Y.; Liu, J.; Li, D. F.; Chen, S. X.; Zhang, Y. C.; Li, J. Y.; Fan, L.; Guan, Z. Y.; Lo, C. M.; Wang, L. D. et al. Development of magnet-driven and image-guided degradable microrobots for the precise delivery of engineered stem cells for cancer therapy. Small 2020, 16, 1906908.

[109]

Iacovacci, V.; Blanc, A.; Huang, H. W.; Ricotti, L.; Schibli, R.; Menciassi, A.; Behe, M.; Pané, S.; Nelson, B. J. High-resolution spect imaging of stimuli-responsive soft microrobots. Small 2019, 15, 1900709.

[110]

Zhu, J. Q.; Lyu, L.; Xu, Y.; Liang, H. G.; Zhang, X. P.; Ding, H.; Wu, Z. G. Intelligent soft surgical robots for next-generation minimally invasive surgery. Adv. Intell. Syst. 2021, 3, 2100011.

[111]

Liu, X. Y.; Yang, Y. Y.; Inda, M. E.; Lin, S. T.; Wu, J. J.; Kim, Y.; Chen, X. Y.; Ma, D. C.; Lu, T. K.; Zhao, X. H. Magnetic living hydrogels for intestinal localization, retention, and diagnosis. Adv. Funct. Mater. 2021, 31, 2010918.

[112]

Breger, J. C.; Yoon, C.; Xiao, R.; Kwag, H. R.; Wang, M. O.; Fisher, J. P.; Nguyen, T. D.; Gracias, D. H. Self-folding thermo-magnetically responsive soft microgrippers. ACS Appl. Mater. Interfaces 2015, 7, 3398–3405.

[113]

Cai, L. J.; Xu, D. Y.; Chen, H. X.; Wang, L.; Zhao, Y. J. Designing bioactive micro-/nanomotors for engineered regeneration. Eng. Regener. 2021, 2, 109–115.

[114]

Peng, M. X.; Zhao, Q. L.; Wang, M.; Du, X. M. Reconfigurable scaffolds for adaptive tissue regeneration. Nanoscale 2023, 15, 6105–6120.

[115]

Zhao, Q. L.; Wang, J.; Cui, H. Q.; Chen, H. X.; Wang, Y. L.; Du, X. M. Programmed shape-morphing scaffolds enabling facile 3D endothelialization. Adv. Funct. Mater. 2018, 28, 1801027.

[116]

Yasa, I. C.; Tabak, A. F.; Yasa, O.; Ceylan, H.; Sitti, M. 3D-printed microrobotic transporters with recapitulated stem cell niche for programmable and active cell delivery. Adv. Funct. Mater. 2019, 29, 1808992.

[117]

Yu, Y. R.; Guo, J. H.; Wang, Y. T.; Shao, C. M.; Wang, Y.; Zhao, Y. J. Bioinspired helical micromotors as dynamic cell microcarriers. ACS Appl. Mater. Interfaces 2020, 12, 16097–16103.

[118]

Lee, H. G.; Wheeler, M. A.; Quintana, F. J. Function and therapeutic value of astrocytes in neurological diseases. Nat. Rev. Drug Discov. 2022, 21, 339–358.

[119]

Liu, K.; Hacker, F.; Daraio, C. Robotic surfaces with reversible, spatiotemporal control for shape morphing and object manipulation. Sci. Robot. 2021, 6, eabf5116.

[120]

Zhang, H. Y.; Li, Z. S.; Gao, C. Y.; Fan, X. J.; Pang, Y. X.; Li, T. L.; Wu, Z. G.; Xie, H.; He, Q. Dual-responsive biohybrid neutrobots for active target delivery. Sci. Robot. 2021, 6, eaaz9519.

[121]

Zhu, Z. J.; Park, H. S.; McAlpine, M. C. 3D printed deformable sensors. Sci. Adv. 2020, 6, eaba5575.

[122]

Wang, F.; Liu, M. J.; Liu, C.; Zhao, Q. L.; Wang, T.; Wang, Z. K.; Du, X. M. Light-induced charged slippery surfaces. Sci. Adv. 2022, 8, eabp9369.

[123]

Wang, F.; Liu, M. J.; Liu, C.; Huang, C.; Zhang, L. D.; Cui, A. Y.; Hu, Z. G.; Du, X. M. Light control of droplets on photo-induced charged surfaces. Natl. Sci. Rev. 2022, 10, nwac164.

[124]

Yan, X. H.; Zhou, Q.; Vincent, M.; Deng, Y.; Yu, J. F.; Xu, J. B.; Xu, T. T.; Tang, T.; Bian, L. M.; Wang, Y. X. J. et al. Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Sci. Robot. 2017, 2, eaaq1155.

Nano Research
Pages 649-662
Cite this article:
Nie M, Zhao Q, Du X. Recent advances in small-scale hydrogel-based robots for adaptive biomedical applications. Nano Research, 2024, 17(2): 649-662. https://doi.org/10.1007/s12274-023-6184-y
Topics:
Part of a topical collection:

968

Views

117

Downloads

5

Crossref

2

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 25 June 2023
Revised: 07 September 2023
Accepted: 11 September 2023
Published: 16 October 2023
© Tsinghua University Press 2023
Return