Journal Home > Volume 17 , Issue 2

Small-scale robots, ranging in size from micrometers to centimeters, have gained significant attention in the biomedical field. However, conventional small-scale robots made of rigid materials encounter challenges in adapting themselves to the soft tissues and complicated environments of human body. Compared to the rigid counterpart, small-scale hydrogel-based robots hold great promises due to their tissue-like low modulus, outstanding biocompatibility and accessible stimuli-responsive capabilities. These attributes offer small-scale hydrogel-based robots with multimodal locomotion and reinforced functions, further enhancing the adaptability in manipulation and tasks execution for various biomedical applications. In this review, we present recent advances in small-scale hydrogel-based robots. We first summarize the design principles of small-scale hydrogel-based robots including materials, fabrication techniques and manipulation strategies, then highlighting their upgraded functions and adaptive biomedical applications. Finally, we discuss existing challenges and future perspectives for small-scale hydrogel-based robots.


menu
Abstract
Full text
Outline
About this article

Recent advances in small-scale hydrogel-based robots for adaptive biomedical applications

Show Author's information Mingzhe NieQilong ZhaoXuemin Du( )
Institute of Biomedical & Health Engineering, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China

Abstract

Small-scale robots, ranging in size from micrometers to centimeters, have gained significant attention in the biomedical field. However, conventional small-scale robots made of rigid materials encounter challenges in adapting themselves to the soft tissues and complicated environments of human body. Compared to the rigid counterpart, small-scale hydrogel-based robots hold great promises due to their tissue-like low modulus, outstanding biocompatibility and accessible stimuli-responsive capabilities. These attributes offer small-scale hydrogel-based robots with multimodal locomotion and reinforced functions, further enhancing the adaptability in manipulation and tasks execution for various biomedical applications. In this review, we present recent advances in small-scale hydrogel-based robots. We first summarize the design principles of small-scale hydrogel-based robots including materials, fabrication techniques and manipulation strategies, then highlighting their upgraded functions and adaptive biomedical applications. Finally, we discuss existing challenges and future perspectives for small-scale hydrogel-based robots.

Keywords: hydrogel, multi-function, locomotion, adaptability, small-scale robot

References(124)

[1]

Palagi, S.; Fischer, P. Bioinspired microrobots. Nat. Rev. Mater. 2018, 3, 113–124.

[2]

Hu, W. Q.; Lum, G. Z.; Mastrangeli, M.; Sitti, M. Small-scale soft-bodied robot with multimodal locomotion. Nature 2018, 554, 81–85.

[3]

Nocentini, S.; Parmeggiani, C.; Martella, D.; Wiersma, D. S. Optically driven soft micro robotics. Adv. Opt. Mater. 2018, 6, 1800207.

[4]

Chen, Y. H.; Yang, J. J.; Zhang, X.; Feng, Y. Y.; Zeng, H.; Wang, L.; Feng, W. Light-driven bimorph soft actuators: Design, fabrication, and properties. Mater. Horiz. 2021, 8, 728–757.

[5]

Wang, B.; Kostarelos, K.; Nelson, B. J.; Zhang, L. Trends in micro-/nanorobotics: Materials development, actuation, localization, and system integration for biomedical applications. Adv. Mater. 2021, 33, 2002047.

[6]

Park, J.; Kim, J. Y.; Pané, S.; Nelson, B. J.; Choi, H. Acoustically mediated controlled drug release and targeted therapy with degradable 3D porous magnetic microrobots. Adv. Healthc. Mater. 2021, 10, 2001096.

[7]

Chen, X. Z.; Jang, B.; Ahmed, D.; Hu, C. Z.; De Marco, C.; Hoop, M.; Mushtaq, F.; Nelson, B. J.; Pané, S. Small-scale machines driven by external power sources. Adv. Mater. 2018, 30, 1705061.

[8]

Ceylan, H.; Dogan, N. O.; Yasa, I. C.; Musaoglu, M. N.; Kulali, Z. U.; Sitti, M. 3D printed personalized magnetic micromachines from patient blood-derived biomaterials. Sci. Adv. 2021, 7, eabh0273.

[9]

Kim, Y.; Zhao, X. H. Magnetic soft materials and robots. Chem. Rev. 2022, 122, 5317–5364.

[10]

Lee, Y.; Song, W. J.; Sun, J. Y. Hydrogel soft robotics. Mater. Today Phys. 2020, 15, 100258.

[11]

Zhang, Y. L.; Zhang, Y. P.; Han, Y. Q.; Gong, X. Micro/nanorobots for medical diagnosis and disease treatment. Micromachines 2022, 13, 648.

[12]

Cui, J. Z.; Huang, T. Y.; Luo, Z. C.; Testa, P.; Gu, H. R.; Chen, X. Z.; Nelson, B. J.; Heyderman, L. J. Nanomagnetic encoding of shape-morphing micromachines. Nature 2019, 575, 164–168.

[13]

Lee, Y.; Koehler, F.; Dillon, T.; Loke, G.; Kim, Y.; Marion, J.; Antonini, M. J.; Garwood, I. C.; Sahasrabudhe, A.; Nagao, K. et al. Magnetically actuated fiber-based soft robots. Adv. Mater 2023, 35, 2301916.

[14]

Chen, Y. Y.; Chen, D. X.; Liang, S. Z.; Dai, Y. G.; Bai, X.; Song, B.; Zhang, D. Y.; Chen, H. W.; Feng, L. Recent advances in field-controlled micro-nano manipulations and micro-nano robots. Adv. Intell. Syst. 2022, 4, 2100116.

[15]

Cianchetti, M.; Laschi, C.; Menciassi, A.; Dario, P. Biomedical applications of soft robotics. Nat. Rev. Mater. 2018, 3, 143–153.

[16]

Soto, F.; Wang, J.; Ahmed, R.; Demirci, U. Medical micro/nanorobots in precision medicine. Adv. Sci. 2020, 7, 2002203.

[17]

Brown, T. E.; Anseth, K. S. Spatiotemporal hydrogel biomaterials for regenerative medicine. Chem. Soc. Rev. 2017, 46, 6532–6552.

[18]

Wu, Z. G.; Troll, J.; Jeong, H. H.; Wei, Q.; Stang, M.; Ziemssen, F.; Wang, Z. G.; Dong, M. D.; Schnichels, S.; Qiu, T. et al. A swarm of slippery micropropellers penetrates the vitreous body of the eye. Sci. Adv. 2018, 4, eaat4388.

[19]

Wu, Z. G.; Li, L.; Yang, Y. R.; Hu, P.; Li, Y.; Yang, S. Y.; Wang, L. V.; Gao, W. A microrobotic system guided by photoacoustic computed tomography for targeted navigation in intestines in vivo. Sci. Robot. 2019, 4, eaax0613.

[20]

Chen, M. L.; Lin, Z. H.; Xuan, M. J.; Lin, X. K.; Yang, M. C.; Dai, L. R.; He, Q. Programmable dynamic shapes with a swarm of light-powered colloidal motors. Angew. Chem., Int. Ed. 2021, 60, 16674–16679.

[21]

Liu, X. Y.; Liu, J.; Lin, S. T.; Zhao, X. H. Hydrogel machines. Mater. Today 2020, 36, 102–124.

[22]

Apsite, I.; Salehi, S.; Ionov, L. Materials for smart soft actuator systems. Chem. Rev. 2022, 122, 1349–1415.

[23]

Ni, B.; Chen, H.; Zhang, M. X.; Keller, P.; Tatoulian, M.; Li, M. H. Thermo-mechanical and photo-luminescence properties of micro-actuators made of liquid crystal elastomers with cyano-oligo (p-phenylene vinylene) crosslinking bridges. Mater. Chem. Front. 2019, 3, 2499–2506.

[24]

Wang, Y. L.; Cui, H. Q.; Zhao, Q. L.; Du, X. M. Chameleon-inspired structural-color actuators. Matter 2019, 1, 626–638.

[25]

Xia, Y. L.; He, Y.; Zhang, F. H.; Liu, Y. J.; Leng, J. S. A review of shape memory polymers and composites: Mechanisms, materials, and applications. Adv. Mater. 2021, 33, 2000713.

[26]

Hines, L.; Petersen, K.; Lum, G. Z.; Sitti, M. Soft actuators for small-scale robotics. Adv. Mater. 2017, 29, 1603483.

[27]

Zhu, H.; Xu, B. R.; Wang, Y.; Pan, X. X.; Qu, Z. H.; Mei, Y. F. Self-powered locomotion of a hydrogel water strider. Sci. Robot. 2021, 6, eabe7925.

[28]

Li, C.; Iscen, A.; Palmer, L. C.; Schatz, G. C.; Stupp, S. I. Light-driven expansion of spiropyran hydrogels. J. Am. Chem. Soc. 2020, 142, 8447–8453.

[29]

Banisadr, S.; Chen, J. Infrared actuation-induced simultaneous reconfiguration of surface color and morphology for soft robotics. Sci. Rep. 2017, 7, 17521.

[30]

Choe, A.; Yeom, J.; Kwon, Y.; Lee, Y.; Shin, Y. E.; Kim, J.; Ko, H. Stimuli-responsive micro/nanoporous hairy skin for adaptive thermal insulation and infrared camouflage. Mater. Horiz. 2020, 7, 3258–3265.

[31]

Erol, O.; Pantula, A.; Liu, W. Q.; Gracias, D. H. Transformer hydrogels: A review. Adv. Mater. Technol. 2019, 4, 1900043.

[32]

Jeon, S. J.; Hauser, A. W.; Hayward, R. C. Shape-morphing materials from stimuli-responsive hydrogel hybrids. Acc. Chem. Res. 2017, 50, 161–169.

[33]

Ding, M.; Jing, L.; Yang, H.; Machnicki, C. E.; Fu, X.; Li, K.; Wong, I. Y.; Chen, P. Y. Multifunctional soft machines based on stimuli-responsive hydrogels: From freestanding hydrogels to smart integrated systems. Mater. Today Adv. 2020, 8, 100088.

[34]

Jiao, D. J.; Zhu, Q. L.; Li, C. Y.; Zheng, Q.; Wu, Z. L. Programmable morphing hydrogels for soft actuators and robots: From structure designs to active functions. Acc. Chem. Res. 2022, 55, 1533–1545.

[35]

Li, L.; Scheiger, J. M.; Levkin, P. A. Design and applications of photoresponsive hydrogels. Adv. Mater. 2019, 31, 1807333.

[36]

Dong, Y.; Wang, J.; Guo, X. K.; Yang, S. S.; Ozen, M. O.; Chen, P.; Liu, X.; Du, W.; Xiao, F.; Demirci, U. et al. Multi-stimuli-responsive programmable biomimetic actuator. Nat. Commun. 2019, 10, 4087.

[37]

Cai, L. J.; Wang, H.; Yu, Y. R.; Bian, F. K.; Wang, Y.; Shi, K. Q.; Ye, F. F.; Zhao, Y. J. Stomatocyte structural color-barcode micromotors for multiplex assays. Natl. Sci. Rev. 2020, 7, 644–651.

[38]

Ng, C. S. X.; Tan, M. W. M.; Xu, C. Y.; Yang, Z. L.; Lee, P. S.; Lum, G. Z. Locomotion of miniature soft robots. Adv. Mater. 2021, 33, 2003558.

[39]

Lin, X. Y.; Xu, B. R.; Zhu, H.; Liu, J. R.; Solovev, A.; Mei, Y. F. Requirement and development of hydrogel micromotors towards biomedical applications. Research 2020, 2020, 7659749.

[40]

Koleoso, M.; Feng, X.; Xue, Y.; Li, Q.; Munshi, T.; Chen, X. Micro/nanoscale magnetic robots for biomedical applications. Mater. Today Bio 2020, 8, 100085.

[41]

Accardo, J. V.; Kalow, J. A. Reversibly tuning hydrogel stiffness through photocontrolled dynamic covalent crosslinks. Chem. Sci. 2018, 9, 5987–5993.

[42]

Nie, M. Z.; Huang, C.; Du, X. M. Recent advances in colour-tunable soft actuators. Nanoscale 2021, 13, 2780–2791.

[43]

Bozuyuk, U.; Yasa, O.; Yasa, I. C.; Ceylan, H.; Kizilel, S.; Sitti, M. Light-triggered drug release from 3D-printed magnetic chitosan microswimmers. ACS Nano 2018, 12, 9617–9625.

[44]

Kim, D.; Jo, A.; Imani, K. B. C.; Kim, D.; Chung, J. W.; Yoon, J. Microfluidic fabrication of multistimuli-responsive tubular hydrogels for cellular scaffolds. Langmuir 2018, 34, 4351–4359.

[45]

Hu, N.; Wang, L. F.; Zhai, W. H.; Sun, M. M.; Xie, H.; Wu, Z. G.; He, Q. Magnetically actuated rolling of star-shaped hydrogel microswimmer. Macromol. Chem. Phys. 2018, 219, 1700540.

[46]

Hu, X. H.; Yasa, I. C.; Ren, Z. Y.; Goudu, S. R.; Ceylan, H.; Hu, W. Q.; Sitti, M. Magnetic soft micromachines made of linked microactuator networks. Sci. Adv. 2021, 7, eabe8436.

[47]

Kim, D. I.; Lee, H.; Kwon, S. H.; Choi, H.; Park, S. Magnetic nano-particles retrievable biodegradable hydrogel microrobot. Sens. Actuators B:Chem. 2019, 289, 65–77.

[48]

Hu, H.; Nie, M. Z.; Galluzzi, M.; Yu, X. F.; Du, X. M. Mimosa-inspired high-sensitive and multi-responsive starch actuators. Adv. Funct. Mater 2023, 2304634.

[49]

Wang, X. P.; Qin, X. H.; Hu, C. Z.; Terzopoulou, A.; Chen, X. Z.; Huang, T. Y.; Maniura-Weber, K.; Pané, S.; Nelson, B. J. 3D printed enzymatically biodegradable soft helical microswimmers. Adv. Funct. Mater. 2018, 28, 1804107.

[50]

Tang, J. P.; Yao, C.; Gu, Z.; Jung, S.; Luo, D.; Yang, D. Y. Super-soft and super-elastic DNA robot with magnetically driven navigational locomotion for cell delivery in confined space. Angew. Chem., Int. Ed. 2020, 59, 2490–2495.

[51]

Gervasoni, S.; Terzopoulou, A.; Franco, C.; Veciana, A.; Pedrini, N.; Burri, J. T.; De Marco, C.; Siringil, E. C.; Chen, X. Z.; Nelson, B. J. et al. CANDYBOTS: A new generation of 3D-printed sugar-based transient small-scale robots. Adv. Mater 2020, 32, 2005652.

[52]

Li, Z. W.; Myung, N. V.; Yin, Y. D. Light-powered soft steam engines for self-adaptive oscillation and biomimetic swimming. Sci. Robot. 2021, 6, eabi4523.

[53]

Xia, N.; Jin, B. W.; Jin, D. D.; Yang, Z. X.; Pan, C. F.; Wang, Q. Q.; Ji, F. T.; Iacovacci, V.; Majidi, C.; Ding, Y. et al. Decoupling and reprogramming the wiggling motion of midge larvae using a soft robotic platform. Adv. Mater. 2022, 34, 2109126.

[54]

Wu, S. W.; Hua, M. T.; Alsaid, Y.; Du, Y. J.; Ma, Y. F.; Zhao, Y. S.; Lo, C. Y.; Wang, C. R.; Wu, D.; Yao, B. W. et al. Poly (vinyl alcohol) hydrogels with broad-range tunable mechanical properties via the hofmeister effect. Adv. Mater. 2021, 33, 2007829.

[55]

Kim, D. I.; Lee, H.; Kwon, S. H.; Sung, Y. J.; Song, W. K.; Park, S. Bilayer hydrogel sheet-type intraocular microrobot for drug delivery and magnetic nanoparticles retrieval. Adv. Healthc. Mater. 2020, 9, 2000118.

[56]

Park, J.; Jin, C.; Lee, S.; Kim, J. Y.; Choi, H. Magnetically actuated degradable microrobots for actively controlled drug release and hyperthermia therapy. Adv. Healthc. Mater. 2019, 8, 1900213.

[57]

Huang, H. W.; Uslu, F. E.; Katsamba, P.; Lauga, E.; Sakar, M. S.; Nelson, B. J. Adaptive locomotion of artificial microswimmers. Sci. Adv. 2019, 5, eaau1532.

[58]

Zhao, X. H.; Kim, J.; Cezar, C. A.; Huebsch, N.; Lee, K.; Bouhadir, K.; Mooney, D. J. Active scaffolds for on-demand drug and cell delivery. Proc. Natl. Acad. Sci. USA 2011, 108, 67–72.

[59]

Sun, Z. F.; Yamauchi, Y.; Araoka, F.; Kim, Y. S.; Bergueiro, J.; Ishida, Y.; Ebina, Y.; Sasaki, T.; Hikima, T.; Aida, T. An anisotropic hydrogel actuator enabling earthworm-like directed peristaltic crawling. Angew. Chem., Int. Ed. 2018, 57, 15772–15776.

[60]

Mourran, A.; Zhang, H.; Vinokur, R.; Möller, M. Soft microrobots employing nonequilibrium actuation via plasmonic heating. Adv. Mater. 2017, 29, 1604825.

[61]

Xin, C.; Jin, D. D.; Hu, Y. L.; Yang, L.; Li, R.; Wang, L.; Ren, Z. G.; Wang, D. W.; Ji, S. Y.; Hu, K. et al. Environmentally adaptive shape-morphing microrobots for localized cancer cell treatment. ACS Nano 2021, 15, 18048–18059.

[62]

Lee, Y. W.; Chun, S.; Son, D.; Hu, X. H.; Schneider, M.; Sitti, M. A tissue adhesion-controllable and biocompatible small-scale hydrogel adhesive robot. Adv. Mater. 2022, 34, 2109325.

[63]

Hu, H.; Huang, C.; Galluzzi, M.; Ye, Q.; Xiao, R.; Yu, X. F.; Du, X. M. Editing the shape morphing of monocomponent natural polysaccharide hydrogel films. Research 2021, 2021, 9786128.

[64]

Du, X.; Cui, H.; Zhao, Q.; Wang, J.; Chen, H.; Wang, Y. Inside-out 3D reversible ion-triggered shape-morphing hydrogels. Research 2019, 2019, 6398296.

[65]

Wang, S. S.; Zhao, Q. L.; Li, J. H.; Du, X. M. Morphing-to-adhesion polysaccharide hydrogel for adaptive biointerfaces. ACS Appl. Mater. Interfaces 2022, 14, 42420–42429.

[66]

Zhang, S.; Ke, X. X.; Jiang, Q.; Chai, Z. P.; Wu, Z. G.; Ding, H. Fabrication and functionality integration technologies for small-scale soft robots. Adv. Mater. 2022, 34, 2200671.

[67]

Tasoglu, S.; Diller, E.; Guven, S.; Sitti, M.; Demirci, U. Untethered micro-robotic coding of three-dimensional material composition. Nat. Commun. 2014, 5, 3124.

[68]

Xie, M. H.; Zhang, W.; Fan, C. Y.; Wu, C.; Feng, Q. S.; Wu, J. J.; Li, Y. Z.; Gao, R.; Li, Z. G.; Wang, Q. G. et al. Bioinspired soft microrobots with precise magneto-collective control for microvascular thrombolysis. Adv. Mater. 2020, 32, 2000366.

[69]

Wu, Z. G.; Lin, X. K.; Zou, X.; Sun, J. M.; He, Q. Biodegradable protein-based rockets for drug transportation and light-triggered release. ACS Appl. Mater. Interfaces 2015, 7, 250–255.

[70]

Dong, M.; Wang, X. P.; Chen, X. Z.; Mushtaq, F.; Deng, S. Y.; Zhu, C. H.; Torlakcik, H.; Terzopoulou, A.; Qin, X. H.; Xiao, X. Z. et al. 3D-printed soft magnetoelectric microswimmers for delivery and differentiation of neuron-like cells. Adv. Funct. Mater. 2020, 30, 1910323.

[71]

Wallin, T. J.; Pikul, J.; Shepherd, R. F. 3D printing of soft robotic systems. Nat. Rev. Mater. 2018, 3, 84–100.

[72]

Peters, C.; Hoop, M.; Pané, S.; Nelson, B. J.; Hierold, C. Degradable magnetic composites for minimally invasive interventions: Device fabrication, targeted drug delivery, and cytotoxicity tests. Adv. Mater. 2016, 28, 533–538.

[73]

Llacer-Wintle, J.; Rivas-Dapena, A.; Chen, X. Z.; Pellicer, E.; Nelson, B. J.; Puigmarti-Luis, J.; Pané, S. Biodegradable small-scale swimmers for biomedical applications. Adv. Mater. 2021, 33, 2102049.

[74]

Adam, G.; Benouhiba, A.; Rabenorosoa, K.; Clévy, C.; Cappelleri, D. J. 4D printing:Enabling technology for microrobotics applications. Adv. Intell. Syst. 2021, 3, 2000216.

[75]

Champeau, M.; Heinze, D. A.; Viana, T. N.; De Souza, E. R.; Chinellato, A. C.; Titotto, S. 4D printing of hydrogels:A review. Adv. Funct. Mater. 2020, 30, 1910606.

[76]

Gao, C. Y.; Wang, Y.; Ye, Z. H.; Lin, Z. H.; Ma, X.; He, Q. Biomedical micro-/nanomotors: From overcoming biological barriers to in vivo imaging. Adv. Mater. 2021, 33, 2000512.

[77]

Dong, Y.; Wang, L.; Iacovacci, V.; Wang, X. P.; Zhang, L.; Nelson, B. J. Magnetic helical micro-/nanomachines: Recent progress and perspective. Matter 2022, 5, 77–109.

[78]

Zhou, H. J.; Mayorga-Martinez, C. C.; Pané, S.; Zhang, L.; Pumera, M. Magnetically driven micro and nanorobots. Chem. Rev. 2021, 121, 4999–5041.

[79]

Lahikainen, M.; Zeng, H.; Priimagi, A. Reconfigurable photoactuator through synergistic use of photochemical and photothermal effects. Nat. Commun. 2018, 9, 4148.

[80]

Tu, Y. F.; Peng, F.; Sui, X.; Men, Y.; White, P. B.; Van Hest, J. C. M.; Wilson, D. A. Self-propelled supramolecular nanomotors with temperature-responsive speed regulation. Nat. Chem. 2017, 9, 480–486.

[81]

Mou, F. Z.; Chen, C. R.; Zhong, Q.; Yin, Y. X.; Ma, H. R.; Guan, J. G. Autonomous motion and temperature-controlled drug delivery of Mg/Pt-poly(N-isopropylacrylamide) Janus micromotors driven by simulated body fluid and blood plasma. ACS Appl. Mater. Interfaces 2014, 6, 9897–9903.

[82]

Li, M. T.; Zhang, H.; Liu, M.; Dong, B. Motion-based glucose sensing based on a fish-like enzymeless motor. J. Mater. Chem. C 2017, 5, 4400–4407.

[83]

Soto, F.; Martin, A.; Ibsen, S.; Vaidyanathan, M.; Garcia-Gradilla, V.; Levin, Y.; Escarpa, A.; Esener, S. C.; Wang, J. Acoustic microcannons: Toward advanced microballistics. ACS Nano 2016, 10, 1522–1528.

[84]

Gelebart, A. H.; Jan Mulder, D.; Varga, M.; Konya, A.; Vantomme, G.; Meijer, E. W.; Selinger, R. L. B.; Broer, D. J. Making waves in a photoactive polymer film. Nature 2017, 546, 632–636.

[85]

Gan, T. S.; Shang, W. H.; Handschuh-Wang, S.; Zhou, X. C. Light-induced shape morphing of liquid metal nanodroplets enabled by polydopamine coating. Small 2019, 15, 1804838.

[86]

Sun, B. N.; Jia, R.; Yang, H.; Chen, X.; Tan, K.; Deng, Q.; Tang, J. D. Magnetic arthropod millirobots fabricated by 3D-printed hydrogels. Adv. Intell. Syst. 2022, 4, 2100139.

[87]

Kim, Y.; Parada, G. A.; Liu, S. D.; Zhao, X. H. Ferromagnetic soft continuum robots. Sci. Robot. 2019, 4, eaax7329.

[88]

Li, Z. G.; Li, Y. Z.; Chen, C.; Cheng, Y. Magnetic-responsive hydrogels: From strategic design to biomedical applications. J. Controlled Release 2021, 335, 541–556.

[89]

Liang, S. M.; Tu, Y. Q.; Chen, Q.; Jia, W.; Wang, W. H.; Zhang, L. D. Microscopic hollow hydrogel springs, necklaces and ladders: A tubular robot as a potential vascular scavenger. Mater. Horiz. 2019, 6, 2135–2142.

[90]

Liu, X. B.; Kent, N.; Ceballos, A.; Streubel, R.; Jiang, Y. F.; Chai, Y.; Kim, P. Y.; Forth, J.; Hellman, F.; Shi, S. W. et al. Reconfigurable ferromagnetic liquid droplets. Science 2019, 365, 264–267.

[91]

Sun, L. Y.; Chen, Z. Y.; Bian, F. K.; Zhao, Y. J. Bioinspired soft robotic caterpillar with cardiomyocyte drivers. Adv. Funct. Mater. 2020, 30, 1907820.

[92]

Sun, L. Y.; Yu, Y. R.; Chen, Z. Y.; Bian, F. K.; Ye, F. F.; Sun, L. Y.; Zhao, Y. J. Biohybrid robotics with living cell actuation. Chem. Soc. Rev. 2020, 49, 4043–4069.

[93]

Cvetkovic, C.; Raman, R.; Chan, V.; Williams, B. J.; Tolish, M.; Bajaj, P.; Sakar, M. S.; Asada, H. H.; Saif, M. T. A.; Bashir, R. Three-dimensionally printed biological machines powered by skeletal muscle. Proc. Natl. Acad. Sci. USA 2014, 111, 10125–10130.

[94]

Li, M. T.; Wang, X.; Dong, B.; Sitti, M. In-air fast response and high speed jumping and rolling of a light-driven hydrogel actuator. Nat. Commun. 2020, 11, 3988.

[95]

Zheng, Z. Q.; Wang, H. P.; Dong, L. X.; Shi, Q.; Li, J. N.; Sun, T.; Huang, Q.; Fukuda, T. Ionic shape-morphing microrobotic end-effectors for environmentally adaptive targeting, releasing, and sampling. Nat. Commun. 2021, 12, 411.

[96]

Huang, H. W.; Sakar, M. S.; Petruska, A. J.; Pané, S.; Nelson, B. J. Soft micromachines with programmable motility and morphology. Nat. Commun. 2016, 7, 12263.

[97]

Du, X. M.; Cui, H. Q.; Xu, T. T.; Huang, C. Y.; Wang, Y. L.; Zhao, Q. L.; Xu, Y. S.; Wu, X. Y. Reconfiguration, camouflage, and color-shifting for bioinspired adaptive hydrogel-based millirobots. Adv. Funct. Mater. 2020, 30, 1909202.

[98]

Shah, D.; Yang, B.; Kriegman, S.; Levin, M.; Bongard, J.; Kramer-Bottiglio, R. Shape changing robots: Bioinspiration, simulation, and physical realization. Adv. Mater. 2021, 33, 2002882.

[99]

Medina-Sánchez, M.; Magdanz, V.; Guix, M.; Fomin, V. M.; Schmidt, O. G. Swimming microrobots: Soft, reconfigurable, and smart. Adv. Funct. Mater. 2018, 28, 1707228.

[100]

Sun, M. M.; Tian, C. Y.; Mao, L. Y.; Meng, X. H.; Shen, X. J.; Hao, B.; Wang, X.; Xie, H.; Zhang, L. Reconfigurable magnetic slime robot: Deformation, adaptability, and multifunction. Adv. Funct. Mater. 2022, 32, 2112508.

[101]

Manzari, M. T.; Shamay, Y.; Kiguchi, H.; Rosen, N.; Scaltriti, M.; Heller, D. A. Targeted drug delivery strategies for precision medicines. Nat. Rev. Mater. 2021, 6, 351–370.

[102]

Cai, L. J.; Zhao, C.; Chen, H. X.; Fan, L.; Zhao, Y. J.; Qian, X. Y.; Chai, R. J. Suction-cup-inspired adhesive micromotors for drug delivery. Adv. Sci. 2022, 9, 2103384.

[103]

Chen, H.; Zhang, H. M.; Xu, T. T.; Yu, J. F. An overview of micronanoswarms for biomedical applications. ACS Nano 2021, 15, 15625–15644.

[104]

Ceylan, H.; Yasa, I. C.; Yasa, O.; Tabak, A. F.; Giltinan, J.; Sitti, M. 3d-printed biodegradable microswimmer for theranostic cargo delivery and release. ACS Nano 2019, 13, 3353–3362.

[105]

Zhang, X. X.; Chen, G. P.; Fu, X.; Wang, Y. T.; Zhao, Y. J. Magneto-responsive microneedle robots for intestinal macromolecule delivery. Adv. Mater. 2021, 33, 2104932.

[106]

Li, H.; Go, G.; Ko, S. Y.; Park, J. O.; Park, S. Magnetic actuated pH-responsive hydrogel-based soft micro-robot for targeted drug delivery. Smart Mater. Struct. 2016, 25, 027001.

[107]

Xu, B.; Han, X.; Hu, Y.; Luo, Y.; Chen, C. H.; Chen, Z.; Shi, P. A remotely controlled transformable soft robot based on engineered cardiac tissue construct. Small 2019, 15, 1900006.

[108]

Wei, T. Y.; Liu, J.; Li, D. F.; Chen, S. X.; Zhang, Y. C.; Li, J. Y.; Fan, L.; Guan, Z. Y.; Lo, C. M.; Wang, L. D. et al. Development of magnet-driven and image-guided degradable microrobots for the precise delivery of engineered stem cells for cancer therapy. Small 2020, 16, 1906908.

[109]

Iacovacci, V.; Blanc, A.; Huang, H. W.; Ricotti, L.; Schibli, R.; Menciassi, A.; Behe, M.; Pané, S.; Nelson, B. J. High-resolution spect imaging of stimuli-responsive soft microrobots. Small 2019, 15, 1900709.

[110]

Zhu, J. Q.; Lyu, L.; Xu, Y.; Liang, H. G.; Zhang, X. P.; Ding, H.; Wu, Z. G. Intelligent soft surgical robots for next-generation minimally invasive surgery. Adv. Intell. Syst. 2021, 3, 2100011.

[111]

Liu, X. Y.; Yang, Y. Y.; Inda, M. E.; Lin, S. T.; Wu, J. J.; Kim, Y.; Chen, X. Y.; Ma, D. C.; Lu, T. K.; Zhao, X. H. Magnetic living hydrogels for intestinal localization, retention, and diagnosis. Adv. Funct. Mater. 2021, 31, 2010918.

[112]

Breger, J. C.; Yoon, C.; Xiao, R.; Kwag, H. R.; Wang, M. O.; Fisher, J. P.; Nguyen, T. D.; Gracias, D. H. Self-folding thermo-magnetically responsive soft microgrippers. ACS Appl. Mater. Interfaces 2015, 7, 3398–3405.

[113]

Cai, L. J.; Xu, D. Y.; Chen, H. X.; Wang, L.; Zhao, Y. J. Designing bioactive micro-/nanomotors for engineered regeneration. Eng. Regener. 2021, 2, 109–115.

[114]

Peng, M. X.; Zhao, Q. L.; Wang, M.; Du, X. M. Reconfigurable scaffolds for adaptive tissue regeneration. Nanoscale 2023, 15, 6105–6120.

[115]

Zhao, Q. L.; Wang, J.; Cui, H. Q.; Chen, H. X.; Wang, Y. L.; Du, X. M. Programmed shape-morphing scaffolds enabling facile 3D endothelialization. Adv. Funct. Mater. 2018, 28, 1801027.

[116]

Yasa, I. C.; Tabak, A. F.; Yasa, O.; Ceylan, H.; Sitti, M. 3D-printed microrobotic transporters with recapitulated stem cell niche for programmable and active cell delivery. Adv. Funct. Mater. 2019, 29, 1808992.

[117]

Yu, Y. R.; Guo, J. H.; Wang, Y. T.; Shao, C. M.; Wang, Y.; Zhao, Y. J. Bioinspired helical micromotors as dynamic cell microcarriers. ACS Appl. Mater. Interfaces 2020, 12, 16097–16103.

[118]

Lee, H. G.; Wheeler, M. A.; Quintana, F. J. Function and therapeutic value of astrocytes in neurological diseases. Nat. Rev. Drug Discov. 2022, 21, 339–358.

[119]

Liu, K.; Hacker, F.; Daraio, C. Robotic surfaces with reversible, spatiotemporal control for shape morphing and object manipulation. Sci. Robot. 2021, 6, eabf5116.

[120]

Zhang, H. Y.; Li, Z. S.; Gao, C. Y.; Fan, X. J.; Pang, Y. X.; Li, T. L.; Wu, Z. G.; Xie, H.; He, Q. Dual-responsive biohybrid neutrobots for active target delivery. Sci. Robot. 2021, 6, eaaz9519.

[121]

Zhu, Z. J.; Park, H. S.; McAlpine, M. C. 3D printed deformable sensors. Sci. Adv. 2020, 6, eaba5575.

[122]

Wang, F.; Liu, M. J.; Liu, C.; Zhao, Q. L.; Wang, T.; Wang, Z. K.; Du, X. M. Light-induced charged slippery surfaces. Sci. Adv. 2022, 8, eabp9369.

[123]

Wang, F.; Liu, M. J.; Liu, C.; Huang, C.; Zhang, L. D.; Cui, A. Y.; Hu, Z. G.; Du, X. M. Light control of droplets on photo-induced charged surfaces. Natl. Sci. Rev. 2022, 10, nwac164.

[124]

Yan, X. H.; Zhou, Q.; Vincent, M.; Deng, Y.; Yu, J. F.; Xu, J. B.; Xu, T. T.; Tang, T.; Bian, L. M.; Wang, Y. X. J. et al. Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Sci. Robot. 2017, 2, eaaq1155.

Publication history
Copyright
Acknowledgements

Publication history

Received: 25 June 2023
Revised: 07 September 2023
Accepted: 11 September 2023
Published: 16 October 2023
Issue date: February 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

The authors acknowledge the financial support provided by the National Natural Science Foundation of China (Nos. 52022102, and 52261160380), National Key R&D Program of China (No. 2017YFA0701303), the Youth Innovation Promotion Association of CAS (No. 2019353), Guangdong Regional Joint Fund-Key Project (No. 2021B1515120076), and the Fundamental Research Program of Shenzhen (Nos. RCJC20221008092729033, and JCYJ20220818101800001).

Return