AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ambipolar tribotronic transistor of MoTe2

Yonghai Li1,2Jinran Yu2,3Yichen Wei1,2Yifei Wang2,3Liuqi Cheng2,4Zhenyu Feng2,4Ya Yang2,3,4Zhong Lin Wang2,5 ( )Qijun Sun2,3,4 ( )
Center on Nanoenergy Research, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
Georgia Institute of Technology, Atlanta, GA 30332-0245, USA
Show Author Information

Graphical Abstract

An ambipolar tribotronic transistor of molybdenum ditelluride (MoTe2) is demonstrated, which shows typical ambipolar transport properties modulated by triboelectric potential. The induced triboelectric potential can readily modulate the transport properties of both electrons and holes in MoTe2 channel and effectively drive the transistor and logic gate.

Abstract

Two-dimensional (2D) tribotronic devices have been successfully involved in electromechanical modulation for channel conductance and applied in intelligent sensing system, touch screen, and logic gates. Ambipolar transistors and corresponding complementary inverters based on one type of semiconductors are highly promising due to the facile fabrication process and readily tunable polarity. Here, we demonstrate an ambipolar tribotronic transistor of molybdenum ditelluride (MoTe2), which shows typical ambipolar transport properties modulated by triboelectric potential. It is comprised of a MoTe2 transistor and a lateral sliding triboelectric nanogenerator (TENG). The induced triboelectric potential by Maxwell’s displacement current (a driving force for TENG) can readily modulate the transport properties of both electrons and holes in MoTe2 channel and effectively drive the transistor. High performance tribotronic properties have been achieved, including low cutoff current below 1 pA·μm−1 and high current on/off ratio of ~ 103 for holes and electrons dominated transports. The working mechanism on how to achieve tribotronic ambipolarity is discussed in detail. A complementary tribotronic inverter based on single flake of MoTe2 is also demonstrated with low power consumption and high stability. This work presents an active approach to efficiently modulate semiconductor devices and logic circuits based on 2D materials through external mechanical signal, which has great potential in human–machine interaction, intelligent sensor, and other wearable devices.

Electronic Supplementary Material

Download File(s)
12274_2023_5758_MOESM1_ESM.pdf (400.6 KB)

References

[1]

Yang, S. H.; Lin, C. Y.; Chang, Y. M.; Li, M. J.; Lee, K. C.; Chen, C. F.; Yang, F. S.; Lien, C. H.; Ueno, K.; Watanabe, K. et al. Oxygen-sensitive layered MoTe2 channels for environmental detection. ACS Appl. Mater. Interfaces 2019, 11, 47047–47053.

[2]

Wang, S.; Ma, J. X.; Shi, X. Y.; Zhu, Y. Y.; Wu, Z. S. Recent status and future perspectives of ultracompact and customizable micro-supercapacitors. Nano Res. Energy 2022, 1, e9120018.

[3]

Zhang, M.; Yuan, J. Y. Graphene meta-aerogels: When sculpture aesthetic meets 1D/2D composite materials. Nano Res. Energy 2022, 1, e9120035.

[4]

Yu, J. R.; Yang, X. X.; Gao, G. Y.; Xiong, Y.; Wang, Y. F.; Han, J.; Chen, Y. H.; Zhang, H.; Sun, Q. J.; Wang, Z. L. Bioinspired mechano-photonic artificial synapse based on graphene/MoS2 heterostructure. Sci. Adv. 2021, 7, eabd9117.

[5]

Das, S.; Dodda, A.; Das, S. A biomimetic 2D transistor for audiomorphic computing. Nat. Commun. 2019, 10, 3450.

[6]

Sun, Q. J.; Seung, W.; Kim, B. J.; Seo, S.; Kim, S. W.; Cho, J. H. Active matrix electronic skin strain sensor based on piezopotential-powered graphene transistors. Adv. Mater. 2015, 27, 3411–3417.

[7]

Safaei, J.; Wang, G. X. Progress and prospects of two-dimensional materials for membrane-based osmotic power generation. Nano Res. Energy 2022, 1, e9120008.

[8]

Huo, Z. W.; Yu, J. R.; Li, Y. H.; Wang, Z. L.; Sun, Q. J. 2D tribotronic transistors. J. Phys.: Energy 2023, 5, 012002.

[9]

Hua, Q. L.; Gao, G. Y.; Jiang, C. S.; Yu, J. R.; Sun, J. L.; Zhang, T. P.; Gao, B.; Cheng, W. J.; Liang, R. R.; Qian, H. et al. Atomic threshold-switching enabled MoS2 transistors towards ultralow-power electronics. Nat. Commun. 2020, 11, 6207.

[10]

Liu, T.; Xiang, D.; Zheng, Y.; Wang, Y. N.; Wang, X. Y.; Wang, L.; He, J.; Liu, L.; Chen, W. Nonvolatile and programmable photodoping in MoTe2 for photoresist-free complementary electronic devices. Adv. Mater. 2018, 30, 1804470.

[11]

Liu, X. C.; Choi, M. S.; Hwang, E.; Yoo, W. J.; Sun, J. Fermi level pinning dependent 2D semiconductor devices: Challenges and prospects. Adv. Mater. 2022, 34, 2108425.

[12]

Gao, G. Y.; Wan, B. S.; Liu, X. Q.; Sun, Q. J.; Yang, X. N.; Wang, L. F.; Pan, C. F.; Wang, Z. L. Tunable tribotronic dual-gate logic devices based on 2D MoS2 and black phosphorus. Adv. Mater. 2018, 30, 1705088.

[13]

Ma, R.; Zhang, H. R.; Yoo, Y.; Degregorio, Z. P.; Jin, L.; Golani, P.; Ghasemi Azadani, J.; Low, T.; Johns, J. E.; Bendersky, L. A. et al. MoTe2 lateral homojunction field-effect transistors fabricated using flux-controlled phase engineering. ACS Nano 2019, 13, 8035–8046.

[14]

Beck, M. E.; Hersam, M. C. Emerging opportunities for electrostatic control in atomically thin devices. ACS Nano 2020, 14, 6498–6518.

[15]

Pezeshki, A.; Hosseini Shokouh, S. H.; Jeon, P. J.; Shackery, I.; Kim, J. S.; Oh, I. K.; Jun, S. C.; Kim, H.; Im, S. Static and dynamic performance of complementary inverters based on nanosheet α-MoTe2 p-channel and MoS2 n-channel transistors. ACS Nano 2016, 10, 1118–1125.

[16]

Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

[17]

Li, Y. H.; Yu, J. R.; Wei, Y. C.; Wang, Y. F.; Feng, Z. Y.; Cheng, L. Q.; Huo, Z. W.; Lei, Y. Q.; Sun, Q. J. Recent progress in self-powered wireless sensors and systems based on TENG. Sensors 2023, 23, 1329.

[18]

Dan, X. Z.; Cao, X. L.; Wang, Y. F.; Yang, J. H.; Wang, Z. L.; Sun, Q. J. A stereoscopically structured triboelectric nanogenerator for bending sensors and hierarchical interactive systems. ACS Appl. Nano Mater. 2023, 6, 3590–3598.

[19]

Zhang, C.; Tang, W.; Zhang, L. M.; Han, C. B.; Wang, Z. L. Contact electrification field-effect transistor. ACS Nano 2014, 8, 8702–8709.

[20]

Zhang, C.; Wang, Z. L. Tribotronics—A new field by coupling triboelectricity and semiconductor. Nano Today 2016, 11, 521–536.

[21]

Yu, J. R.; Yang, X. X.; Sun, Q. J. Piezo/tribotronics toward smart flexible sensors. Adv. Intell. Syst. 2020, 2, 1900175.

[22]

Yang, X. X.; Han, J.; Yu, J. R.; Chen, Y. H.; Zhang, H.; Ding, M.; Jia, C. K.; Sun, J.; Sun, Q. J.; Wang, Z. L. Versatile triboiontronic transistor via proton conductor. ACS Nano 2020, 14, 8668–8677.

[23]

Gao, G. Y.; Yu, J. R.; Yang, X. X.; Pang, Y. K.; Zhao, J.; Pan, C. F.; Sun, Q. J.; Wang, Z. L. Triboiontronic transistor of MoS2. Adv. Mater. 2019, 31, 1806905.

[24]

Yang, X. X.; Yu, J. R.; Zhao, J.; Chen, Y. H.; Gao, G. Y.; Wang, Y. F.; Sun, Q. J.; Wang, Z. L. Mechanoplastic tribotronic floating-gate neuromorphic transistor. Adv. Funct. Mater. 2020, 30, 2002506.

[25]

Zhang, H.; Yu, J. R.; Yang, X. X.; Gao, G. Y.; Qin, S. S.; Sun, J.; Ding, M.; Jia, C. K.; Sun, Q. J.; Wang, Z. L. Ion gel capacitively coupled tribotronic gating for multiparameter distance sensing. ACS Nano 2020, 14, 3461–3468.

[26]

Yang, Z. W.; Pang, Y. K.; Zhang, L. M.; Lu, C. X.; Chen, J.; Zhou, T.; Zhang, C.; Wang, Z. L. Tribotronic transistor array as an active tactile sensing system. ACS Nano 2016, 10, 10912–10920.

[27]

Khan, U.; Kim, T. H.; Ryu, H.; Seung, W.; Kim, S. W. Graphene tribotronics for electronic skin and touch screen applications. Adv. Mater. 2017, 29, 1603544.

[28]

Xue, F.; Chen, L. B.; Wang, L. F.; Pang, Y. K.; Chen, J.; Zhang, C.; Wang, Z. L. MoS2 tribotronic transistor for smart tactile switch. Adv. Funct. Mater. 2016, 26, 2104–2109.

[29]

Pang, Y. K.; Xue, F.; Wang, L. F.; Chen, J.; Luo, J. J.; Jiang, T.; Zhang, C.; Wang, Z. L. Tribotronic enhanced photoresponsivity of a MoS2 phototransistor. Adv. Sci. 2016, 3, 1500419.

[30]

Li, J.; Zhang, C.; Duan, L.; Zhang, L. M.; Wang, L. D.; Dong, G. F.; Wang, Z. L. Flexible organic tribotronic transistor memory for a visible and wearable touch monitoring system. Adv. Mater. 2016, 28, 106–110.

[31]

Pu, J.; Funahashi, K.; Chen, C. H.; Li, M. Y.; Li, L. J.; Takenobu, T. Highly flexible and high-performance complementary inverters of large-area transition metal dichalcogenide monolayers. Adv. Mater. 2016, 28, 4111–4119.

[32]

Cho, A. J.; Park, K. C.; Kwon, J. Y. A high-performance complementary inverter based on transition metal dichalcogenide field-effect transistors. Nanoscale Res. Lett. 2015, 10, 115.

[33]

Liu, X.; Islam, A.; Guo, J.; Feng, P. X. L. Controlling polarity of MoTe2 transistors for monolithic complementary logic via Schottky contact engineering. ACS Nano 2020, 14, 1457–1467.

[34]

Luo, W.; Zhu, M. J.; Peng, G.; Zheng, X. M.; Miao, F.; Bai, S. X.; Zhang, X. A.; Qin, S. Q. Carrier modulation of ambipolar few-layer MoTe2 transistors by MgO surface charge transfer doping. Adv. Funct. Mater. 2018, 28, 1704539.

[35]

Nakaharai, S.; Yamamoto, M.; Ueno, K.; Lin, Y. F.; Li, S. L.; Tsukagoshi, K. Electrostatically reversible polarity of ambipolar α-MoTe2 transistors. ACS Nano 2015, 9, 5976–5983.

[36]

Yin, L.; Wang, F.; Cheng, R. Q.; Wang, Z. X.; Chu, J. W.; Wen, Y.; He, J. Van der Waals heterostructure devices with dynamically controlled conduction polarity and multifunctionality. Adv. Funct. Mater. 2019, 29, 1804897.

[37]

Li, N.; Wang, Q. Q.; Shen, C.; Wei, Z.; Yu, H.; Zhao, J.; Lu, X. B.; Wang, G. L.; He, C. L.; Xie, L. et al. Large-scale flexible and transparent electronics based on monolayer molybdenum disulfide field-effect transistors. Nat. Electron. 2020, 3, 711–717.

[38]

Choi, M.; Park, Y. J.; Sharma, B. K.; Bae, S. R.; Kim, S. Y.; Ahn, J. H. Flexible active-matrix organic light-emitting diode display enabled by MoS2 thin-film transistor. Sci. Adv. 2018, 4, eaas8721.

[39]

Jiang, L. W.; Dong, D. J.; Lu, Y. C. Design strategies for low temperature aqueous electrolytes. Nano Res. Energy 2022, 1, e9120003.

[40]

Qu, D. S.; Liu, X. C.; Huang, M.; Lee, C.; Ahmed, F.; Kim, H.; Ruoff, R. S.; Hone, J.; Yoo, W. J. Carrier-type modulation and mobility improvement of thin MoTe2. Adv. Mater. 2017, 29, 1606433.

[41]

Zhang, S. Y.; Le, S. T.; Richter, C. A.; Hacker, C. A. Improved contacts to p-type MoS2 transistors by charge-transfer doping and contact engineering. Appl. Phys. Lett. 2019, 115, 073106.

[42]

Bai, Y. C.; Sun, L. X.; Yu, Q. M.; Lei, Y.; Liu, B. L. Biomolecule capturing and sensing on 2D transition metal dichalcogenide canvas. Nano Res. Energy 2023, 2, e9120043.

[43]

Li, M. J.; Lin, C. Y.; Chang, Y. M.; Yang, S. H.; Lee, M. P.; Chen, C. F.; Lee, K. C.; Yang, F. S.; Chou, Y.; Lin, Y. C. et al. Facile and reversible carrier-type manipulation of layered MoTe2 toward long-term stable electronics. ACS Appl. Mater. Interfaces 2020, 12, 42918–42924.

[44]

Bandyopadhyay, A. S.; Saenz, G. A.; Kaul, A. B. Role of metal contacts and effect of annealing in high performance 2D WSe2 field-effect transistors. Surf. Coat. Technol. 2020, 381, 125084.

[45]

Wei, N.; Laiho, P.; Khan, A. T.; Hussain, A.; Lyuleeva, A.; Ahmed, S.; Zhang, Q.; Liao, Y. P.; Tian, Y.; Ding, E. X. et al. Fast and ultraclean approach for measuring the transport properties of carbon nanotubes. Adv. Funct. Mater. 2020, 30, 1907150.

[46]

Waldrip, M.; Jurchescu, O. D.; Gundlach, D. J.; Bittle, E. G. Contact resistance in organic field-effect transistors: Conquering the barrier. Adv. Funct. Mater. 2020, 30, 1904576.

[47]

Hatayama, S.; Saito, Y.; Makino, K.; Uchida, N.; Shuang, Y.; Mori, S.; Sutou, Y.; Krbal, M.; Fons, P. Phase control of sputter-grown large-area MoTe2 films by preferential sublimation of Te: Amorphous, 1T', and 2H phases. J. Mater. Chem. C 2022, 10, 10627–10635.

[48]

Zhou, J. Y.; Lin, Z. Y.; Ren, H. Y.; Duan, X. D.; Shakir, I.; Huang, Y.; Duan, X. F. Layered intercalation materials. Adv. Mater. 2021, 33, 2004557.

[49]

He, Q. Y.; Li, P. J.; Wu, Z. H.; Yuan, B.; Luo, Z. T.; Yang, W. L.; Liu, J.; Cao, G. Q.; Zhang, W. F.; Shen, Y. L. et al. Molecular beam epitaxy scalable growth of wafer-scale continuous semiconducting monolayer MoTe2 on inert amorphous dielectrics. Adv. Mater. 2019, 31, 1901578.

[50]

Zhou, L.; Xu, K.; Zubair, A.; Liao, A. D.; Fang, W. J.; Ouyang, F. P.; Lee, Y. H.; Ueno, K.; Saito, R.; Palacios, T. et al. Large-area synthesis of high-quality uniform few-layer MoTe2. J. Am. Chem. Soc. 2015, 137, 11892–11895.

[51]

Cho, S.; Kim, S.; Kim, J. H.; Zhao, J.; Seok, J.; Keum, D. H.; Baik, J.; Choe, D. H.; Chang, K. J.; Suenaga, K. et al. Phase patterning for ohmic homojunction contact in MoTe2. Science 2015, 349, 625–628.

Nano Research
Pages 11907-11913
Cite this article:
Li Y, Yu J, Wei Y, et al. Ambipolar tribotronic transistor of MoTe2. Nano Research, 2023, 16(9): 11907-11913. https://doi.org/10.1007/s12274-023-5758-z
Topics:
Part of a topical collection:

932

Views

4

Crossref

5

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 31 January 2023
Revised: 09 April 2023
Accepted: 18 April 2023
Published: 30 May 2023
© Tsinghua University Press 2023
Return