Journal Home > Volume 16 , Issue 7

Diatomic site catalysts (DACs) with two adjacent atomic metal species can provide synergistic interactions and more sophisticated functionalities to break the bottleneck of intrinsic drawbacks of single atom catalysts (SACs). Herein, we have designed a CuZn diatomic site (CuZn-DAS) electrocatalyst with unique coordination structure (CuN4–ZnN4) by anchoring and ordering the spatial distance between the metal precursors on the carbon nitride (C3N4) derived N-doped carbon (NC) substrate. The CuZn-DAS/NC shows high activity and selectivity for electroreduction CO2 into CO. The Faradaic efficiency for CO of CuZn-DAS/NC (98.4%) is higher than that of Cu single atomic site on NC (Cu-SAS/NC) (36.4%) and Zn single atomic site on NC (Zn-SAS/NC) (66.8%) at −0.6 V versus reversible hydrogen electrode (vs. RHE). In situ characterizations reveal that the CuZn-DAS is more favorable for the formation and adsorption of *COOH than those of the electrocatalysts with single atomic site. Theorical calculations show that the charge redistribution of Zn site in CuZn-DAS/NC caused by the considerable electron transfers from Zn atoms to the adjacent Cu atoms can reduce the adsorption energy barriers for *COOH and *CO production, improving the activity and CO selectivity.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Interatomic electron transfer promotes electroreduction CO2-to-CO efficiency over a CuZn diatomic site

Show Author's information Jican Hao1Han Zhu1( )Qi Zhao2Jiace Hao1Shuanglong Lu1Xiaofan Wang1Fang Duan1Mingliang Du1( )
Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK

Abstract

Diatomic site catalysts (DACs) with two adjacent atomic metal species can provide synergistic interactions and more sophisticated functionalities to break the bottleneck of intrinsic drawbacks of single atom catalysts (SACs). Herein, we have designed a CuZn diatomic site (CuZn-DAS) electrocatalyst with unique coordination structure (CuN4–ZnN4) by anchoring and ordering the spatial distance between the metal precursors on the carbon nitride (C3N4) derived N-doped carbon (NC) substrate. The CuZn-DAS/NC shows high activity and selectivity for electroreduction CO2 into CO. The Faradaic efficiency for CO of CuZn-DAS/NC (98.4%) is higher than that of Cu single atomic site on NC (Cu-SAS/NC) (36.4%) and Zn single atomic site on NC (Zn-SAS/NC) (66.8%) at −0.6 V versus reversible hydrogen electrode (vs. RHE). In situ characterizations reveal that the CuZn-DAS is more favorable for the formation and adsorption of *COOH than those of the electrocatalysts with single atomic site. Theorical calculations show that the charge redistribution of Zn site in CuZn-DAS/NC caused by the considerable electron transfers from Zn atoms to the adjacent Cu atoms can reduce the adsorption energy barriers for *COOH and *CO production, improving the activity and CO selectivity.

Keywords: in situ characterizations, CO2 electroreduction reaction, CuZn diatomic site, interatomic electron transfer

References(50)

[1]

Wang, X. L.; Fu, N. H.; Liu, J. C.; Yu, K.; Li, Z.; Xu, Z. F.; Liang, X.; Zhu, P.; Ye, C. L.; Zhou, A. W. et al. Atomic replacement of PtNi nanoalloys within Zn-ZIF-8 for the fabrication of a multisite CO2 reduction electrocatalyst. J. Am. Chem. Soc. 2022, 144, 23223–23229.

[2]

Ge, L.; Rabiee, H.; Li, M. R.; Subramanian, S.; Zheng, Y.; Lee, J. H.; Burdyny, T.; Wang, H. Electrochemical CO2 reduction in membrane-electrode assemblies. Chem 2022, 8, 663–692.

[3]

Li, L.; Li, X. D.; Sun, Y. F.; Xie, Y. Rational design of electrocatalytic carbon dioxide reduction for a zero-carbon network. Chem. Soc. Rev. 2022, 51, 1234–1252.

[4]

Zhuang, Z. C.; Wang, F. F.; Naidu, R.; Chen, Z. L. Biosynthesis of Pd-Au alloys on carbon fiber paper: Towards an eco-friendly solution for catalysts fabrication. J. Power Sources 2015, 291, 132–137.

[5]

Zhu, H.; Sun, S. H.; Hao, J. C.; Zhuang, Z. C.; Zhang, S. G.; Wang, T. D.; Kang, Q.; Lu, S. L.; Wang, X. F.; Lai, F. L. et al. A high-entropy atomic environment converts inactive to active sites for electrocatalysis. Energy Environ. Sci. 2023, 16, 619–628.

[6]
Wang, G.; Wu, Y.; Li, Z. J.; Lou, Z. Z.; Chen, Q. Q.; Li, Y. F.; Wang, D. S.; Mao, J. J. Engineering a copper single-atom electron bridge to achieve efficient photocatalytic CO2 conversion. Angew. Chem., Int. Ed., in press, DOI: 10.1002/anie.202218460.
[7]

Hao, J. C.; Zhuang, Z. C.; Hao, J. C.; Wang, C.; Lu, S. L.; Duan, F.; Xu, F. P.; Du, M. L.; Zhu, H. Interatomic electronegativity offset dictates selectivity when catalyzing the CO2 reduction reaction. Adv. Energy Mater. 2022, 12, 2200579.

[8]

Song, Y. F.; Junqueira, J. R. C.; Sikdar, N.; Öhl, D.; Dieckhöfer, S.; Quast, T.; Seisel, S.; Masa, J.; Andronescu, C.; Schuhmann, W. B-Cu-Zn gas diffusion electrodes for CO2 electroreduction to C2+ products at high current densities. Angew. Chem., Int. Ed. 2021, 60, 9135–9141.

[9]

Hao, J. C.; Zhuang, Z. C.; Hao, J. C.; Cao, K. C.; Hu, Y. X.; Wu, W. B.; Lu, S. L.; Wang, C.; Zhang, N.; Wang, D. S. et al. Strain relaxation in metal alloy catalysts steers the product selectivity of electrocatalytic CO2 reduction. ACS Nano 2022, 16, 3251–3263.

[10]

Wang, X.; He, W. H.; Shi, J. L.; Junqueira, J. R. C.; Zhang, J.; Dieckhöfer, S.; Seisel, S.; Das, D.; Schuhmann, W. Ag-induced phase transition of Bi2O3 nanofibers for enhanced energy conversion efficiency towards formate in CO2 electroreduction. Chem. Asian J. 2023, 18, e202201165.

[11]

Overa, S.; Ko, B. H.; Zhao, Y. R.; Jiao, F. Electrochemical approaches for CO2 conversion to chemicals: A journey toward practical applications. Acc. Chem. Res. 2022, 55, 638–648.

[12]

Zhu, J. B.; Xiao, M. L.; Ren, D. Z.; Gao, R.; Liu, X. Z.; Zhang, Z.; Luo, D.; Xing, W.; Su, D.; Yu, A. P. et al. Quasi-covalently coupled Ni-Cu atomic pair for synergistic electroreduction of CO2. J. Am. Chem. Soc. 2022, 144, 9661–9671.

[13]

Zhuang, Z. C.; Li, Y.; Huang, J. Z.; Li, Z. L.; Zhao, K. N.; Zhao, Y. L.; Xu, L.; Zhou, L.; Moskaleva, L. V.; Mai, L. Q. Sisyphus effects in hydrogen electrochemistry on metal silicides enabled by silicene subunit edge. Sci. Bull. 2019, 64, 617–624.

[14]

Fan, Z. Z.; Luo, R. C.; Zhang, Y. X.; Zhang, B.; Zhai, P. L.; Zhang, Y. T.; Wang, C.; Gao, J. F.; Zhou, W.; Sun, L. C. et al. Oxygen-bridged indium-nickel atomic pair as dual-metal active sites enabling synergistic electrocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2023, 62, e202216326.

[15]

Qin, H. G.; Li, F. Z.; Du, Y. F.; Yang, L. F.; Wang, H.; Bai, Y. Y.; Lin, M.; Gu, J. Quantitative understanding of cation effects on the electrochemical reduction of CO2 and H+ in acidic solution. ACS Catal. 2022, 13, 916–926.

[16]

Koolen, C. D.; Luo, W.; Züttel, A. From single crystal to single atom catalysts: Structural factors influencing the performance of metal catalysts for CO2 electroreduction. ACS Catal. 2023, 13, 948–973.

[17]

Zhang, N. Q.; Zhang, X. X.; Tao, L.; Jiang, P.; Ye, C. L.; Lin, R.; Huang, Z. W.; Li, A.; Pang, D. W.; Yan, H. et al. Silver single-atom catalyst for efficient electrochemical CO2 reduction synthesized from thermal transformation and surface reconstruction. Angew. Chem., Int. Ed. 2021, 60, 6170–6176.

[18]

Zhang, N. Q.; Zhang, X. X.; Kang, Y. K.; Ye, C. L.; Jin, R.; Yan, H.; Lin, R.; Yang, J. R.; Xu, Q.; Wang, Y. et al. A supported Pd2 dual-atom site catalyst for efficient electrochemical CO2 reduction. Angew. Chem. 2021, 133, 13500–13505.

[19]

Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res. 2022, 15, 7806–7839.

[20]

Wu, X. F.; Sun, J. W.; Liu, P. F.; Zhao, J. Y.; Liu, Y. W.; Guo, L. S.; Dai, S.; Yang, H. G.; Zhao, H. J. Molecularly dispersed cobalt phthalocyanine mediates selective and durable CO2 reduction in a membrane flow cell. Adv. Funct. Mater. 2022, 32, 2107301.

[21]

Pan, F. P.; Li, B. Y.; Sarnello, E.; Fei, Y. H.; Feng, X. H.; Gang, Y.; Xiang, X. M.; Fang, L. Z.; Li, T.; Hu, Y. H. et al. Pore-edge tailoring of single-atom iron-nitrogen sites on graphene for enhanced CO2 reduction. ACS Catal. 2020, 10, 10803–10811.

[22]

Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p–n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.

[23]

Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

[24]

Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

[25]

Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

[26]

Liang, X.; Fu, N. H.; Yao, S. C.; Li, Z.; Li, Y. D. The progress and outlook of metal single-atom-site catalysis. J. Am. Chem. Soc. 2022, 144, 18155–18174.

[27]

Li, M. H.; Wang, H. F.; Luo, W.; Sherrell, P. C.; Chen, J.; Yang, J. P. Heterogeneous single-atom catalysts for electrochemical CO2 reduction reaction. Adv. Mater. 2020, 32, 2001848.

[28]

Tang, T. M.; Wang, Z. L.; Guan, J. Q. Optimizing the electrocatalytic selectivity of carbon dioxide reduction reaction by regulating the electronic structure of single-atom M–N–C materials. Adv. Funct. Mater. 2022, 32, 2111504.

[29]

Zang, W. J.; Kou, Z. K.; Pennycook, S. J.; Wang, J. Heterogeneous single atom electrocatalysis, where “singles” are “married”. Adv. Energy Mater. 2020, 10, 1903181.

[30]

Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

[31]

Li, W. H.; Yang, J. R.; Wang, D. S. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem., Int. Ed. 2022, 61, e202213318.

[32]

Li, R. Z.; Wang, D. S. Understanding the structure-performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

[33]

Jiao, L.; Zhu, J. T.; Zhang, Y.; Yang, W. J.; Zhou, S. Y.; Li, A. W.; Xie, C. F.; Zheng, X. S.; Zhou, W.; Yu, S. H. et al. Non-bonding interaction of neighboring Fe and Ni single-atom pairs on MOF-derived N-doped carbon for enhanced CO2 electroreduction. J. Am. Chem. Soc. 2021, 143, 19417–19424.

[34]

Li, Y. Z.; Wei, B.; Zhu, M. H.; Chen, J. C.; Jiang, Q. K.; Yang, B.; Hou, Y.; Lei, L. C.; Li, Z. J.; Zhang, R. F. et al. Synergistic effect of atomically dispersed Ni-Zn pair sites for enhanced CO2 electroreduction. Adv. Mater. 2021, 33, 2102212.

[35]
Cho, J. H.; Lee, C.; Hong, S. H.; Jang, H. Y.; Back, S.; Seo, M. G.; Lee, M.; Min, H. K.; Choi, Y.; Jang, Y. J. et al. Transition metal ion doping on ZIF-8 enhances the electrochemical CO2 reduction reaction. Adv. Mater., in press, DOI: 10.1002/adma.202208224.
[36]

Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

[37]

Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

[38]

Yang, H. B.; Hung, S. F.; Liu, S.; Yuan, K. D.; Miao, S.; Zhang, L. P.; Huang, X.; Wang, H. Y.; Cai, W. Z.; Chen, R. et al. Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nat. Energy 2018, 3, 140–147.

[39]

Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.

[40]

Wang, Y.; Park, B. J.; Paidi, V. K.; Huang, R.; Lee, Y.; Noh, K. J.; Lee, K. S.; Han, J. W. Precisely constructing orbital coupling-modulated dual-atom Fe pair sites for synergistic CO2 electroreduction. ACS Energy Lett. 2022, 7, 640–649.

[41]

Chen, S. H.; Li, W. H.; Jiang, W. J.; Yang, J. R.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zhuang, Z. C.; Chen, M. Z.; Sun, X. H. et al. MOF encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. Angew. Chem., Int. Ed. 2022, 61, e202114450.

[42]

Cheng, H. Y.; Wu, X. M.; Feng, M. M.; Li, X. C.; Lei, G. P.; Fan, Z. H.; Pan, D. W.; Cui, F. J.; He, G. H. Atomically dispersed Ni/Cu dual sites for boosting the CO2 reduction reaction. ACS Catal. 2021, 11, 12673–12681.

[43]

Feng, M. M.; Wu, X. M.; Cheng, H. Y.; Fan, Z. H.; Li, X. C.; Cui, F. J.; Fan, S.; Dai, Y.; Lei, G. P.; He, G. H. Well-defined Fe-Cu diatomic sites for efficient catalysis of CO2 electroreduction. J. Mater. Chem. A 2021, 9, 23817–23827.

[44]

Sun, K. A.; Yu, K.; Fang, J. J.; Zhuang, Z. W.; Tan, X.; Wu, Y.; Zeng, L. Y.; Zhuang, Z. B.; Pan, Y.; Chen, C. Nature-inspired design of molybdenum-selenium dual-single-atom electrocatalysts for CO2 reduction. Adv. Mater. 2022, 34, 2206478.

[45]

Pei, J. J.; Wang, T.; Sui, R.; Zhang, X. J.; Zhou, D. N.; Qin, F. J.; Zhao, X.; Liu, Q. H.; Yan, W. S.; Dong, J. C. et al. N-bridged Co–N–Ni: New bimetallic sites for promoting electrochemical CO2 reduction. Energy Environ. Sci. 2021, 14, 3019–3028.

[46]

Zheng, W. Z.; Wang, Y.; Shuai, L.; Wang, X. Y.; He, F.; Lei, C. J.; Li, Z. J.; Yang, B.; Lei, L. C.; Yuan, C. et al. Highly boosted reaction kinetics in carbon dioxide electroreduction by surface-introduced electronegative dopants. Adv. Funct. Mater. 2021, 31, 2008146.

[47]

Leverett, J.; Daiyan, R.; Gong, L. L.; Iputera, K.; Tong, Z. Z.; Qu, J. T.; Ma, Z. P.; Zhang, Q. R.; Cheong, S.; Cairney, J. et al. Designing undercoordinated Ni–Nx and Fe–Nx on holey graphene for electrochemical CO2 conversion to syngas. ACS Nano 2021, 15, 12006–12018.

[48]

Yang, F.; Song, P.; Liu, X. Z.; Mei, B. B.; Xing, W.; Jiang, Z.; Gu, L.; Xu, W. L. Highly efficient CO2 electroreduction on ZnN4-based single-atom catalyst. Angew. Chem., Int. Ed. 2018, 57, 12303–12307.

[49]

Wang, S. G.; Zhou, P.; Zhou, L.; Lv, F.; Sun, Y. J.; Zhang, Q. H.; Gu, L.; Yang, H.; Guo, S. J. A unique gas-migration, trapping, and emitting strategy for high-loading single atomic Cd sites for carbon dioxide electroreduction. Nano Lett. 2021, 21, 4262–4269.

[50]

Ding, T.; Liu, X. K.; Tao, Z. N.; Liu, T. Y.; Chen, T.; Zhang, W.; Shen, X. Y.; Liu, D.; Wang, S. C.; Pang, B. B. et al. Atomically precise dinuclear site active toward electrocatalytic CO2 reduction. J. Am. Chem. Soc. 2021, 143, 11317–11324.

File
12274_2023_5577_MOESM1_ESM.pdf (2.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 29 January 2023
Revised: 12 February 2023
Accepted: 13 February 2023
Published: 13 March 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Nos. 52073124 and 52273058), the Natural Science Foundation of Jiangsu Province (No. SBK2022030167), the MOE & SAFEA, 111 Project (No. B13025), and the Fundamental Research Funds for the Central Universities. The authors would also like to thank the Central Laboratory, School of Chemical and Material Engineering, Jiangnan University.

Return