Journal Home > Volume 16 , Issue 12

Organic photovoltaic semiconductors have made significant progress and have promising application prospects after decades of development. When compared with traditional semiconductors, the solution method for preparing photovoltaic semiconductors shows the advantages of low cost and convenient preparation. However, because of the extremely poor solubility of the polymers used to prepare semiconductors, toxic solvents must be used when using the solution method, which has significant negative effects on the environment and operators and severely limits its development prospects. Organic nanoparticles (NPs), on the other hand, can avoid these issues. Because NPs are typically water or alcohol-based, no toxic solvents are used. Furthermore, NPs have been used in organic solar cells, hydrogen catalysis, organic light-emitting diodes, and other fields after nearly two decades of development, and their preparation methods have been developed. We describe the preparation, optimization, and application of NPs in photovoltaic semiconductors in this review.


menu
Abstract
Full text
Outline
About this article

Synthesis and application of green solvent dispersed organic semiconducting nanoparticles

Show Author's information Siwen Zhang1,2Hong Zhang2( )Shuo Yang3Xin Zhang1,2Shilin Li4Liqing Huang1,2Ya-nan Jing4Linge Xiao2Yuan Zhang4Bing Han5( )Jia-jie Kang1( )Huiqiong Zhou2( )
China School of Engineering and Technology, China University of Geosciences (Beijing), Beijing 100083, China
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
Beijing Tingrun Membrane Technology Development Co., Ltd., Beijing 101102, China
School of Chemistry, Beihang University, Beijing 100191, China
The Department of thoraciccardio surgery, PLA Rocket Force Characteristic Medical Center, Beijing 100088, China

Abstract

Organic photovoltaic semiconductors have made significant progress and have promising application prospects after decades of development. When compared with traditional semiconductors, the solution method for preparing photovoltaic semiconductors shows the advantages of low cost and convenient preparation. However, because of the extremely poor solubility of the polymers used to prepare semiconductors, toxic solvents must be used when using the solution method, which has significant negative effects on the environment and operators and severely limits its development prospects. Organic nanoparticles (NPs), on the other hand, can avoid these issues. Because NPs are typically water or alcohol-based, no toxic solvents are used. Furthermore, NPs have been used in organic solar cells, hydrogen catalysis, organic light-emitting diodes, and other fields after nearly two decades of development, and their preparation methods have been developed. We describe the preparation, optimization, and application of NPs in photovoltaic semiconductors in this review.

Keywords: nanoparticle, surfactant, organic semiconductor, miniemulsion method, nanoprecipitation method

References(98)

[1]

Ferraris, J.; Cowan, D. O.; Walatka, V.; Perlstein, J. H. Electron transfer in a new highly conducting donor–acceptor complex. J. Am. Chem. Soc. 1973, 95, 948–949.

[2]

Shirakawa, H.; Louis, E. J.; MaCdiarmid, A. G.; Ching, C. K.; Heeger, A. J. Synthesis of electrically conducting organic polymers: Halogen derivatives of polyacetylene, (CH)x. J. Chem. Soc. Chem. Commun. 1977, 578–580.

[3]

Granström, M.; Petritsch, K.; Arias, A. C.; Lux, A.; Andersson, M. R.; Friend, R. H. Laminated fabrication of polymeric photovoltaic diodes. Nature 1998, 395, 257–260.

[4]

Li, X. J.; Pan, F.; Sun, C. K.; Zhang, M.; Wang, Z. W.; Du, J. Q.; Wang, J.; Xiao, M.; Xue, L. W.; Zhang, Z. G. et al. Simplified synthetic routes for low cost and high photovoltaic performance n-type organic semiconductor acceptors. Nat. Commun. 2019, 10, 519.

[5]

Chen, Y. N.; Zhao, Y.; Liang, Z. Q. Solution processed organic thermoelectrics: Towards flexible thermoelectric modules. Energy Environ. Sci. 2015, 8, 401–422.

[6]

Qian, Y.; Zhang, X. W.; Qi, D. P.; Xie, L. H.; Chandran, B. K.; Chen, X. D.; Huang, W. Thin-film organic semiconductor devices: From flexibility to ultraflexibility. Sci. China Mater. 2016, 59, 589–608.

[7]

Qian, Y.; Zhang, X. W.; Xie, L. H.; Qi, D. P.; Chandran, B. K.; Chen, X. D.; Huang, W. Stretchable organic semiconductor devices. Adv. Mater. 2016, 28, 9243–9265.

[8]

Kubo, T.; Häusermann, R.; Tsurumi, J.; Soeda, J.; Okada, Y.; Yamashita, Y.; Akamatsu, N.; Shishido, A.; Mitsui, C.; Okamoto, T. et al. Suppressing molecular vibrations in organic semiconductors by inducing strain. Nat. Commun. 2016, 7, 11156.

[9]

Stolle, A.; Szuppa, T.; Leonhardt, S. E. S.; Ondruschka, B. Ball milling in organic synthesis: Solutions and challenges. Chem. Soc. Rev. 2011, 40, 2317–2329.

[10]

Wang, G. W. Mechanochemical organic synthesis. Chem. Soc. Rev. 2013, 42, 7668–7700.

[11]

Báti, G.; Csókás, D.; Yong, T.; Tam, S. M.; Shi, R. R. S.; Webster, R. D.; Pápai, I.; García, F.; Stuparu, M. C. Mechanochemical synthesis of corannulene-based curved nanographenes. Angew. Chem., Int. Ed. 2020, 59, 21620–21626.

[12]

Seo, T.; Toyoshima, N.; Kubota, K.; Ito, H. Tackling solubility issues in organic synthesis: Solid-state cross-coupling of insoluble aryl halides. J. Am. Chem. Soc. 2021, 143, 6165–6175.

[13]

Qin, Z. S.; Gao, C.; Gao, H. K.; Wang, T. Y.; Dong, H. L.; Hu, W. P. Molecular doped, color-tunable, high-mobility, emissive, organic semiconductors for light-emitting transistors. Sci. Adv. 2022, 8, eabp8775.

[14]

Giri, G.; Verploegen, E.; Mannsfeld, S. C. B.; Atahan-Evrenk, S.; Kim, D. H.; Lee, S. Y.; Becerril, H. A.; Aspuru-Guzik, A.; Toney, M. F.; Bao, Z. N. Tuning charge transport in solution-sheared organic semiconductors using lattice strain. Nature 2011, 480, 504–508.

[15]

Gao, P.; Beckmann, D.; Tsao, H. N.; Feng, X. L.; Enkelmann, V.; Baumgarten, M.; Pisula, W.; Müllen, K. Dithieno[2,3-d;2',3'-d′]benzo[1,2-b;4,5-b']dithiophene (DTBDT) as semiconductor for high-performance, solution-processed organic field-effect transistors. Adv. Mater. 2009, 21, 213–216.

[16]

Ho, D.; Lee, J.; Park, S.; Park, Y.; Cho, K.; Campana, F.; Lanari, D.; Facchetti, A.; Seo, S.; Kim, C. et al. Green solvents for organic thin-film transistor processing. J. Mater. Chem. C 2020, 8, 5786–5794.

[17]

Walker, B.; Tamayo, A.; Duong, D. T.; Dang, X. D.; Kim, C.; Granstrom, J.; Nguyen, T. Q. A systematic approach to solvent selection based on cohesive energy densities in a molecular bulk heterojunction system. Adv. Energy Mater. 2011, 1, 221–229.

[18]
Campana, F.; Lanari, D.; Marrocchi, A.; Vaccaro, L. Green solvents for organic electronics processing. In Sustainable Strategies in Organic Electronics; Marrocchi, A., Ed; Elsevier: Amsterdam, 2022; pp 425–462.
DOI
[19]

Henderson, R. K.; Jiménez-González, C.; Constable, D. J. C.; Alston, S. R.; Inglis, G. G. A.; Fisher, G.; Sherwood, J.; Binks, S. P.; Curzons, A. D. Expanding GSK’s solvent selection guide-embedding sustainability into solvent selection starting at medicinal chemistry. Green Chem. 2011, 13, 854–862.

[20]

Li, S. L.; Zhang, H.; Yue, S. L.; Yu, X.; Zhou, H. Q. Recent advances in non-fullerene organic photovoltaics enabled by green solvent processing. Nanotechnology 2022, 33, 072002.

[21]

Duan, C. H.; Zhang, K.; Zhong, C. M.; Huang, F.; Cao, Y. Recent advances in water/alcohol-soluble π-conjugated materials: New materials and growing applications in solar cells. Chem. Soc. Rev. 2013, 42, 9071–9104.

[22]

Tada, K. Yet another poor man’s green bulk heterojunction photocells: Annealing effect and film composition dependence of photovoltaic devices using poly(3-hexylthiophene): C70 composites prepared with chlorine-free solvent. Sol. Energy Mater. Sol. Cells 2013, 108, 82–86.

[23]

Campana, F.; Kim, C.; Marrocchi, A.; Vaccaro, L. Green solvent-processed organic electronic devices. J. Mater. Chem. C 2020, 8, 15027–15047.

[24]

Lee, W. Y.; Giri, G.; Diao, Y.; Tassone, C. J.; Matthews, J. R.; Sorensen, M. L.; Mannsfeld, S. C. B.; Chen, W. C.; Fong, H. H.; Tok, J. B. H. et al. Effect of non-chlorinated mixed solvents on charge transport and morphology of solution-processed polymer field-effect transistors. Adv. Funct. Mater. 2014, 24, 3524–3534.

[25]

Zhang, L. Z.; Zhou, X. Y.; Zhong, X. W.; Cheng, C.; Tian, Y. Q.; Xu, B. M. Hole-transporting layer based on a conjugated polyelectrolyte with organic cations enables efficient inverted perovskite solar cells. Nano Energy 2019, 57, 248–255.

[26]

Chen, Y.; Zhang, S. Q.; Wu, Y.; Hou, J. H. Molecular design and morphology control towards efficient polymer solar cells processed using non-aromatic and non-chlorinated solvents. Adv. Mater. 2014, 26, 2744–2749.

[27]

Zhao, Y.; Xie, Z. Y.; Qin, C. J.; Qu, Y.; Geng, Y. H.; Wang, L. X. Enhanced charge collection in polymer photovoltaic cells by using an ethanol-soluble conjugated polyfluorene as cathode buffer layer. Sol. Energy Mater. Sol. Cells 2009, 93, 604–608.

[28]

Yassar, A.; Miozzo, L.; Gironda, R.; Horowitz, G. Rod-coil and all-conjugated block copolymers for photovoltaic applications. Prog. Polym. Sci. 2013, 38, 791–844.

[29]

Tang, F.; Wu, K. L.; Zhou, Z. J.; Wang, G.; Zhao, B.; Tan, S. T. Alkynyl-functionalized pyrene-cored perylene diimide electron acceptors for efficient nonfullerene organic solar cells. ACS Appl. Energy Mater. 2019, 2, 3918–3926.

[30]

Ding, S.; Ni, Z. J.; Hu, M. X.; Qiu, G. G.; Li, J.; Ye, J.; Zhang, X. T.; Liu, F.; Dong, H. L.; Hu, W. P. An asymmetric furan/thieno[3, 2-b]thiophene diketopyrrolopyrrole building block for annealing-free green-solvent processable organic thin-film transistors. Macromol. Rapid Commun. 2018, 39, 1800225.

[31]

Choi, H. H.; Baek, J. Y.; Song, E.; Kang, B.; Cho, K.; Kwon, S. K.; Kim, Y. H. A pseudo-regular alternating conjugated copolymer using an asymmetric monomer: A high-mobility organic transistor in nonchlorinated solvents. Adv. Mater. 2015, 27, 3626–3631.

[32]

Li, Z. Y.; Ying, L.; Zhu, P.; Zhong, W. K.; Li, N.; Liu, F.; Huang, F.; Cao, Y. A generic green solvent concept boosting the power conversion efficiency of all-polymer solar cells to 11%. Energy Environ. Sci. 2019, 12, 157–163.

[33]

Zhao, W. C.; Zhang, S. Q.; Zhang, Y.; Li, S. S.; Liu, X. Y.; He, C.; Zheng, Z.; Hou, J. H. Environmentally friendly solvent-processed organic solar cells that are highly efficient and adaptable for the blade-coating method. Adv. Mater. 2018, 30, 1704837.

[34]

Ma, Z. W.; Zhao, B.; Gong, Y. S.; Deng, J. P.; Tan, Z. A. Green-solvent-processable strategies for achieving large-scale manufacture of organic photovoltaics. J. Mater. Chem. A 2019, 7, 22826–22847.

[35]

Rao, J. P.; Geckeler, K. E. Polymer nanoparticles: Preparation techniques and size-control parameters. Prog. Polym. Sci. 2011, 36, 887–913.

[36]

Li, K. X.; Zhang, T. L.; Li, H. Z.; Li, M. Z., Song, Y. L. The precise assembly of nanoparticles. Acta Phys. Chim. Sin. 2020, 36, 1911057.

[37]

Mishchuk, N. A.; Verbich, S. V.; Dukhin, S. S.; Holt, Ø.; Sjöblom, J. Rapid brownian coagulation in dilute polydisperse emulsions. J. Dispersion Sci. Technol. 1997, 18, 517–537.

[38]

Kabalnov, A. S.; Pertzov, A. V.; Shchukin, E. D. Ostwald ripening in emulsions: I. Direct observations of Ostwald ripening in emulsions. J. Colloid Interface Sci. 1987, 118, 590–570.

[39]

Landfester, K.; Montenegro, R.; Scherf, U.; Güntner, R.; Asawapirom, U.; Patil, S.; Neher, D.; Kietzke, T. Semiconducting polymer nanospheres in aqueous dispersion prepared by a miniemulsion process. 3.0.CO;2-V">Adv. Mater. 2002, 14, 651–655.

[40]

Fessi, H.; Puisieux, F.; Devissaguet, J. P.; Ammoury, N.; Benita, S. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int. J. Pharm. 1989, 55, R1–R4.

[41]

Mora-Huertas, C. E.; Fessi, H.; Elaissari, A. Influence of process and formulation parameters on the formation of submicron particles by solvent displacement and emulsification-diffusion methods: Critical comparison. Adv. Colloid Interface Sci. 2011, 163, 90–122.

[42]

Gavory, C.; Durand, A.; Six, J. L.; Nouvel, C.; Marie, E.; Leonard, M. Polysaccharide-covered nanoparticles prepared by nanoprecipitation. Carbohydr. Polym. 2011, 84, 133–140.

[43]

Holmes. A.; Deniau, E.; Lartigau-Dagron, C.; Bousquet, A.; Chambon, S.; Holmes, N. P. Review of waterborne organicsemiconductor colloids for photovoltaics. ACS Nano 2021, 15, 3927–3959.

[44]

Landfester, K. The generation of nanoparticles in miniemulsions. 3.0.CO;2-F">Adv. Mater. 2001, 13, 765–768.

[45]

Aubry, J.; Ganachaud, F.; Addad, J. P. C.; Cabane, B. Nanoprecipitation of polymethylmethacrylate by solvent shifting: 1. Boundaries. Langmuir 2009, 25, 1970–1979.

[46]

Chambon, S.; Schatz, C.; Sébire, V.; Pavageau, B.; Wantz, G.; Hirsch, L. Organic semiconductor core–shell nanoparticles designed through successive solvent displacements. Mater. Horiz. 2014, 1, 431–438.

[47]

Palacio Valera, A.; Schatz, C.; Ibarboure, E.; Kubo, T.; Segawa, H.; Chambon, S. Elaboration of PCBM coated P3HT nanoparticles: Understanding the shell formation. Front. Energy Res. 2019, 6, 146.

[48]

Tan, B.; Li, Y. C.; Palacios, M. F.; Therrien, J.; Sobkowicz, M. J. Effect of surfactant conjugation on structure and properties of poly(3-hexylthiophene) colloids and field effect transistors. Colloids Surf. A: Physicochem. Eng. Aspects 2016, 488, 7–14.

[49]

Cho, J.; Yoon, S.; Sim, K. M.; Jeong, Y. J.; Park, C. E.; Kwon, S. K.; Kim, Y. H.; Chung, D. S. Universal selection rule for surfactants used in miniemulsion processes for eco-friendly and high performance polymer semiconductors. Energy Environ. Sci. 2017, 10, 2324–2333.

[50]

Kosco, J.; Bidwell, M.; Cha, H.; Martin, T.; Howells, C. T.; Sachs, M.; Anjum, D. H.; Lopez, S. G.; Zou, L. Y.; Wadsworth, A. et al. Enhanced photocatalytic hydrogen evolution from organic semiconductor heterojunction nanoparticles. Nat. Mater. 2020, 19, 559–565.

[51]

Cho, J.; Cheon, K. H.; Ahn, H.; Park, K. H.; Kwon, S. K.; Kim, Y. H.; Chung, D. S. High charge-carrier mobility of 2.5 cm2·V−1·s−1 from a water-borne colloid of a polymeric semiconductor via smart surfactant engineering. Adv. Mater. 2015, 27, 5587–5592.

[52]

Stapleton, A.; Vaughan, B.; Xue, B. F.; Sesa, E.; Burke, K.; Zhou, X. J.; Bryant, G.; Werzer, O.; Nelson, A.; Kilcoyne, A. L. D. et al. A multilayered approach to polyfluorene water-based organic photovoltaics. Sol. Energy Mater. Sol. Cells 2012, 102, 114–124.

[53]

Xie, C.; Heumüller, T.; Gruber, W.; Tang, X. F.; Classen, A.; Schuldes, I.; Bidwell, M.; Späth, A.; Fink, R. H.; Unruh, T. et al. Overcoming efficiency and stability limits in water-processing nanoparticular organic photovoltaics by minimizing microstructure defects. Nat. Commun. 2018, 9, 5335.

[54]

Colberts, F. J. M.; Wienk, M. M.; Janssen, R. A. J. Aqueous nanoparticle polymer solar cells: Effects of surfactant concentration and processing on device performance. ACS Appl. Mater. Interfaces 2017, 9, 13380–13389.

[55]

Kietzke, T.; Neher, D.; Landfester, K.; Montenegro, R.; Güntner, R.; Scherf, U. Novel approaches to polymer blends based on polymer nanoparticles. Nat. Mater. 2003, 2, 408–412.

[56]

Ulum, S.; Holmes, N.; Darwis, D.; Burke, K.; Kilcoyne, A. L. D.; Zhou, X. J.; Belcher, W.; Dastoor, P. Determining the structural motif of P3HT: PCBM nanoparticulate organic photovoltaic devices. Sol. Energy Mater. Sol. Cells 2013, 110, 43–48.

[57]

Piok, T.; Gamerith, S.; Gadermaier, C.; Plank, H.; Wenzl, F. P.; Patil, S.; Montenegro, R.; Kietzke, T.; Neher, D.; Scherf, U. et al. Organic light-emitting devices fabricated from semiconducting nanospheres. Adv. Mater. 2003, 15, 800–804.

[58]

Ulum, S.; Holmes, N.; Barr, M.; Kilcoyne, A. L. D.; Gong, B. B.; Zhou, X. J.; Belcher, W.; Dastoor, P. The role of miscibility in polymer: Fullerene nanoparticulate organic photovoltaic devices. Nano Energy 2013, 2, 897–905.

[59]

Holmes, N. P.; Nicolaidis, N.; Feron, K.; Barr, M.; Burke, K. B.; Al-Mudhaffer, M.; Sista, P.; Kilcoyne, A. L. D.; Stefan, M. C.; Zhou, X. J. et al. Probing the origin of photocurrent in nanoparticulate organic photovoltaics. Sol. Energy Mater. Sol. Cells 2015, 140, 412–421.

[60]

Holmes, N. P.; Marks, M.; Kumar, P.; Kroon, R.; Barr, M. G.; Nicolaidis, N.; Feron, K.; Pivrikas, A.; Fahy, A.; de Zerio Mendaza, A. D. et al. Nano-pathways: Bridging the divide between water-processable nanoparticulate and bulk heterojunction organic photovoltaics. Nano Energy 2016, 19, 495–510.

[61]

D’Olieslaeger, L.; Pirotte, G.; Cardinaletti, I.; D’Haen, J.; Manca, J.; Vanderzande, D.; Maes, W.; Ethirajan, A. Eco-friendly fabrication of PBDTTPD:PC71BM solar cells reaching a PCE of 3.8% using water-based nanoparticle dispersions. Org. Electron. 2017, 42, 42–46.

[62]

Prunet, G.; Parrenin, L.; Pavlopoulou, E.; Pecastaings, G.; Brochon, C.; Hadziioannou, G.; Cloutet, E. Aqueous PCDTBT:PC71BM photovoltaic inks made by nanoprecipitation. Macromol. Rapid Commun. 2018, 39, 1700504.

[63]

Parrenin, L.; Laurans, G.; Pavlopoulou, E.; Fleury, G.; Pecastaings, G.; Brochon, C.; Vignau, L.; Hadziioannou, G.; Cloutet, E. Photoactive donor–acceptor composite nanoparticles dispersed in water. Langmuir 2017, 33, 1507–1515.

[64]

Xie, C.; Classen, A.; Späth, A.; Tang, X. F.; Min, J.; Meyer, M.; Zhang, C. H.; Li, N.; Osvet, A.; Fink, R. H. et al. Overcoming microstructural limitations in water processed organic solar cells by engineering customized nanoparticulate inks. Adv. Energy Mater. 2018, 8, 1702857.

[65]

Pan, X.; Sharma, A.; Gedefaw, D.; Kroon, R.; de Zerio, A. D.; Holmes, N. P.; Kilcoyne, A. L. D.; Barr, M. G.; Fahy, A.; Marks, M. et al. Environmentally friendly preparation of nanoparticles for organic photovoltaics. Org. Electron. 2018, 59, 432–440.

[66]

Andersen, T. R.; Larsen-Olsen, T. T.; Andreasen, B.; Böttiger, A. P. L.; Carlé, J. E.; Helgesen, M.; Bundgaard, E.; Norrman, K.; Andreasen, J. W.; Jørgensen, M.; Krebs, F. C. Aqueous processing of low-band-gap polymer solar cells using roll-to-roll methods. ACS Nano 2011, 5, 4188–4196.

[67]

Vaughan, B.; Williams, E. L.; Holmes, N. P.; Sonar, P.; Dodabalapur, A.; Dastoor, P. C.; Belcher, W. J. Water-based nanoparticulate solar cells using a diketopyrrolopyrrole donor polymer. Phys. Chem. Chem. Phys. 2014, 16, 2647–2653.

[68]

Yamamoto, N. A. D.; Payne, M. E.; Koehler, M.; Facchetti, A.; Roman, L. S.; Arias, A. C. Charge transport model for photovoltaic devices based on printed polymer: Fullerene nanoparticles. Sol. Energy Mater. Sol. Cells 2015, 141, 171–177.

[69]

D’Olieslaeger, L.; Pfannmöller, M.; Fron, E.; Cardinaletti, I.; Van Der Auweraer, M.; Van Tendeloo, G.; Bals, S.; Maes, W.; Vanderzande, D.; Manca, J. et al. Tuning of PCDTBT:PC71BM blend nanoparticles for eco-friendly processing of polymer solar cells. Sol. Energy Mater. Sol. Cells 2017, 159, 179–188.

[70]

Larsen-Olsen, T. T.; Andreasen, B.; Andersen, T. R.; Böttiger, A. P. L.; Bundgaard, E.; Norrman, K.; Andreasen, J. W.; Jørgensen, M.; Krebs, F. C. Simultaneous multilayer formation of the polymer solar cell stack using roll-to-roll double slot-die coating from water. Sol. Energy Mater. Sol. Cells 2012, 97, 22–27.

[71]

Gehan, T. S.; Bag, M.; Renna, L. A.; Shen, X. B.; Algaier, D. D.; Lahti, P. M.; Russell, T. P.; Venkataraman, D. Multiscale active layer morphologies for organic photovoltaics through self-assembly of nanospheres. Nano Lett. 2014, 14, 5238–5243.

[72]

Holmes, N. P.; Ulum, S.; Sista, P.; Burke, K. B.; Wilson, M. G.; Stefan, M. C.; Zhou, X. J.; Dastoor, P. C.; Belcher, W. J. The effect of polymer molecular weight on P3HT:PCBM nanoparticulate organic photovoltaic device performance. Sol. Energy Mater. Sol. Cells 2014, 128, 369–377.

[73]

Bag, M.; Gehan, T. S.; Renna, L. A.; Algaier, D. D.; Lahti, P. M.; Venkataraman, D. Fabrication conditions for efficient organic photovoltaic cells from aqueous dispersions of nanoparticles. RSC Adv. 2014, 4, 45325–45331.

[74]

Almyahi, F.; Andersen, T. R.; Fahy, A.; Dickinson, M.; Feron, K.; Belcher, W. J.; Dastoor, P. C. The role of surface energy control in organic photovoltaics based on solar paints. J. Mater. Chem. A 2019, 7, 9202–9214.

[75]

Gärtner, S.; Christmann, M.; Sankaran, S.; Röhm, H.; Prinz, E. M.; Penth, F.; Pütz, A.; Türeli, A. E.; Penth, B.; Baumstümmler, B. et al. Eco-friendly fabrication of 4% efficient organic solar cells from surfactant-free P3HT:ICBA nanoparticle dispersions. Adv. Mater. 2014, 26, 6653–6657.

[76]

Gärtner, S.; Clulow, A. J.; Howard, I. A.; Gilbert, E. P.; Burn, P. L.; Gentle, I. R.; Colsmann, A. Relating structure to efficiency in surfactant-free polymer/fullerene nanoparticle-based organic solar cells. ACS Appl. Mater. Interfaces 2017, 9, 42986–42995.

[77]

Sankaran, S.; Glaser, K.; Gärtner, S.; Rödlmeier, T.; Sudau, K.; Hernandez-Sosa, G.; Colsmann, A. Fabrication of polymer solar cells from organic nanoparticle dispersions by doctor blading or ink-jet printing. Org. Electron. 2016, 28, 118–122.

[78]

Xie, C.; Tang, X. F.; Berlinghof, M.; Langner, S.; Chen, S.; Späth, A.; Li, N.; Fink, R. H.; Unruh, T.; Brabec, C. J. Robot-based high-throughput engineering of alcoholic polymer: Fullerene nanoparticle inks for an eco-friendly processing of organic solar cells. ACS Appl. Mater. Interfaces 2018, 10, 23225–23234.

[79]

Darwis, D.; Holmes, N.; Elkington, D.; David Kilcoyne, A. L.; Bryant, G.; Zhou, X. J.; Dastoor, P.; Belcher, W. Surfactant-free nanoparticulate organic photovoltaics. Sol. Energy Mater. Sol. Cells 2014, 121, 99–107.

[80]

Wolff, C. M.; Frischmann, P. D.; Schulze, M.; Bohn, B. J.; Wein, R.; Livadas, P.; Carlson, M. T.; Jäckel, F.; Feldmann, J.; Würthner, F. et al. All-in-one visible-light-driven water splitting by combining nanoparticulate and molecular co-catalysts on CdS nanorods. Nat. Energy 2018, 3, 862–869.

[81]

Tahir, M.; Tasleem, S.; Tahir, B. Recent development in band engineering of binary semiconductor materials for solar driven photocatalytic hydrogen production. Int. J. Hydrogen Energy 2020, 45, 15985–16038.

[82]

Pan, J. B.; Shen, S.; Zhou, W.; Tang, J.; Ding, H. Z.; Wang, J. B.; Chen, L.; Au, C. T.; Yin, S. F. Recent progress in photocatalytic hydrogen evolution. cta Phys.—Chim. Sin. 2020, 36, 1905068.

[83]

Wang, Y.; Wang, D. S.; Li, Y. D. A fundamental comprehension and recent progress in advanced Pt-based ORR nanocatalysts. SmartMat 2021, 2, 56–75.

[84]

Zhang, D. P.; Li, Y. X.; Li, Y.; Zhan, S. H. Towards single-atom photocatalysts for future carbon-neutral application. SmartMat 2022, 3, 417–446.

[85]

Liu, A. J.; Tai, C. W.; Holá, K.; Tian, H. N. Hollow polymer dots: Nature-mimicking architecture for efficient photocatalytic hydrogen evolution reaction. J. Mater. Chem. A 2019, 7, 4797–4803.

[86]

Wang, L.; Fernández-Terán, R.; Zhang, L.; Fernandes, D. L. A.; Tian, L.; Chen, H.; Tian, H. N. Organic polymer dots as photocatalysts for visible light-driven hydrogen generation. Angew. Chem., Int. Ed. 2016, 55, 12306–12310.

[87]

Kosco, J.; Sachs, M.; Godin, R.; Kirkus, M.; Francas, L.; Bidwell, M.; Qureshi, M.; Anjum, D.; Durrant, J. R.; McCulloch, I. The effect of residual palladium catalyst contamination on the photocatalytic hydrogen evolution activity of conjugated polymers. Adv. Energy Mater. 2018, 8, 1802181.

[88]

Kosco, J.; Gonzalez-Carrero, S.; Howells, C. T.; Fei, T.; Dong, Y. F.; Sougrat, R.; Harrison, G. T.; Firdaus, Y.; Sheelamanthula, R.; Purushothaman, B. et al. Generation of long-lived charges in organic semiconductor heterojunction nanoparticles for efficient photocatalytic hydrogen evolution. Nat. Energy 2022, 7, 340–351.

[89]

Zhou, K.; Tang, J.; Fang, S. F.; Jiang, K.; Yang, F. X.; Ji, D. Y.; Xiang, J.; Liu, J.; Dong, H. L.; Han, C. et al. Efficient energy transfer in organic light-emitting transistor with tunable wavelength. Nano Res. 2021, 15, 3647–3652.

[90]

Zheng, L.; Li, J. F.; Zhou, K.; Yu, X. X.; Zhang, X. T.; Dong, H. L.; Hu, W. P. Molecular-scale integrated multi-functions for organic light-emitting transistors. Nano Res. 2020, 13, 1976–1981.

[91]

Ribeiro, A. H.; Fakih, A.; van der Zee, B.; Veith, L.; Glaser, G.; Kunz, A.; Landfester, K.; Blom, P. W. M.; Michels, J. J. Green and stable processing of organic light-emitting diodes from aqueous nanodispersions. J. Mater. Chem. C 2020, 8, 6528–6535.

[92]

Kim, G.; Kang, S. J.; Dutta, G. K.; Han, Y. K.; Shin, T. J.; Noh, Y. Y.; Yang, C. A thienoisoindigo-naphthalene polymer with ultrahigh mobility of 14.4 cm2/(V·s) that substantially exceeds benchmark values for amorphous silicon semiconductors. J. Am. Chem. Soc. 2014, 136, 9477–9483.

[93]

Kanimozhi, C.; Yaacobi-Gross, N.; Chou, K. W.; Amassian, A.; Anthopoulos, T. D.; Patil, S. Diketopyrrolopyrrole-diketopyrrolopyrrole-based conjugated copolymer for high-mobility organic field-effect transistors. J. Am. Chem. Soc. 2012, 134, 16532–16535.

[94]

Millstone, J. E.; Kavulak, D. F.; Woo, C. H.; Holcombe, T. W.; Westling, E. J.; Briseno, A. L.; Toney, M. F.; Fréchet, J. M. J. Synthesis, properties, and electronic applications of size-controlled poly(3-hexylthiophene) nanoparticles. Langmuir 2010, 26, 13056–13061.

[95]

Cho, J.; Cheon, K. H.; Park, K. H.; Kwon, S. K.; Kim, Y. H.; Chung, D. S. Colloids of semiconducting polymers for high-performance, environment-friendly polymer field effect transistors. Org. Electron. 2015, 24, 160–164.

[96]

Cho, J.; Cheon, K. H.; Ha, J.; Chung, D. S. Water-based high-performance polymer field effect transistors enabled by heat-assisted surfactant elimination. Chem. Eng. J. 2016, 286, 122–127.

[97]

Allard, S.; Forster, M.; Souharce, B.; Thiem, H.; Scherf, U. Organic semiconductors for solution-processable field-effect transistors (OFETs). Angew. Chem., Int. Ed. 2008, 47, 4070–4098.

[98]

Ferretti, A. M.; Diterlizzi, M.; Porzio, W.; Giovanella, U.; Ganzer, L.; Virgili, T.; Vohra, V.; Arias, E.; Moggio, I.; Scavia, G. et al. Rod-coil block copolymer: Fullerene blend water-processable nanoparticles: How molecular structure addresses morphology and efficiency in NP-OPVs. Nanomaterials 2022, 12, 84.

Publication history
Copyright
Acknowledgements

Publication history

Received: 16 December 2022
Revised: 09 February 2023
Accepted: 10 February 2023
Published: 01 April 2023
Issue date: December 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21922505 and 52273245) and the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB36000000).

Return