AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Development and application of blade-coating technique in organic solar cells

Xin Zhang1,2Hong Zhang2( )Shilin Li3Linge Xiao2Siwen Zhang1,2Bing Han4( )Jiajie Kang1( )Huiqiong Zhou2( )
China School of Engineering and Technology, China University of Geosciences (Beijing), Beijing 100083, China
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
School of Chemistry, Beihang University, Beijing 100191, China
The Department of Thoraciccardio Surgery, PLA Rocket Force Characteristic Medical Center, Beijing 100088, China
Show Author Information

Graphical Abstract

In this review, we discuss the technique of blade-coating, including the influence of blading speed, substrate temperature, and other technological innovation. Besides, we also summarize the recent progress of blade-coating in organic solar cells form several aspects.

Abstract

Due to the characteristics of lower material waste, higher crystallinity, roll-to-roll compatibility, and high-throughput continuous processing, blade-coating has been widely applied in the preparation of large-area organic solar cells. In this paper, the technique of blade-coating is introduced, including the effects of blading speed, substrate temperature, and other technological innovations during the process of blade-coating. Besides, the recent progress of blade-coating in organic solar cells is summarized and the active layer prepared by a blade-coating method is introduced in detail, including materials, processing methods, solvents, and additives. The interface layer and electrodes prepared by the blade-coating method are also discussed. Finally, some perspectives on the blade-coating method are proposed. In the foreseeable future, blade-coating will become the core of batch production of large-area organic solar cells, so as to make organic solar cells more competitive.

References

[1]

He, C. L.; Pan, Y. W.; Ouyang, Y. N.; Shen, Q.; Gao, Y.; Yan, K. R.; Fang, J.; Chen, Y. Y.; Ma, C. Q.; Min, J. et al. Manipulating the D: A interfacial energetics and intermolecular packing for 19.2% efficiency organic photovoltaics. Energy Environ. Sci. 2022, 15, 2537–2544.

[2]

Sun, R.; Wu, Y.; Yang, X. R.; Gao, Y.; Chen, Z.; Li, K.; Qiao, J. W.; Wang, T.; Guo, J.; Liu, C. et al. Single-junction organic solar cells with 19.17% efficiency enabled by introducing one asymmetric guest acceptor. Adv. Mater. 2022, 34, 2110147.

[3]

Zhu, L.; Zhang, M.; Xu, J. Q.; Li, C.; Yan, J.; Zhou, G. Q.; Zhong, W. K.; Hao, T. Y.; Song, J. L.; Xue, X. N. et al. Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nat. Mater. 2022, 21, 656–663.

[4]

Liu, S. Q.; Chen, D.; Zhou, W. H.; Yu, Z.; Chen, L.; Liu, F.; Chen, Y. W. Vertical distribution to optimize active layer morphology for efficient all-polymer solar cells by J71 as a compatibilizer. Macromolecules 2019, 52, 4359–4369.

[5]

Wan, J.; Zhang, L. F.; He, Q. N.; Liu, S. Q.; Huang, B.; Hu, L.; Zhou, W. H.; Chen, Y. W. High-performance pseudoplanar heterojunction ternary organic solar cells with nonfullerene alloyed acceptor. Adv. Funct. Mater. 2020, 30, 1909760.

[6]

Krebs, F. C. Fabrication and processing of polymer solar cells: A review of printing and coating techniques. Sol. Energy Mater. Sol. Cells 2009, 93, 394–412.

[7]

Bornside, D. E.; Macosko, C. W.; Scriven, L. E. Spin coating: One-dimensional model. J. Appl. Phys. 1989, 66, 5185–5193.

[8]

Liu, F.; Ferdous, S.; Schaible, E.; Hexemer, A.; Church, M.; Ding, X. D.; Wang, C.; Russell, T. P. Fast printing and in-situ morphology observation of organic photovoltaics using slot-die coating. Adv. Mater. 2015, 27, 886–891.

[9]

Na, S. I.; Seo, Y. H.; Nah, Y. C.; Kim, S. S.; Heo, H.; Kim, J. E.; Rolston, N.; Dauskardt, R. H.; Gao, M.; Lee, Y. et al. High performance roll-to-roll produced fullerene-free organic photovoltaic devices via temperature-controlled slot die coating. Adv. Funct. Mater. 2018, 29, 1805825.

[10]

Haldar, A.; Liao, K. S.; Curran, S. A. Effect of printing parameters and annealing on organic photovoltaics performance. J. Mater. Res. 2012, 27, 2079–2087.

[11]

Schilinsky, P.; Waldauf, C.; Brabec, C. J. Performance analysis of printed bulk heterojunction solar cells. Adv. Funct. Mater. 2006, 16, 1669–1672.

[12]

Chang, Y. H.; Tseng, S. R.; Chen, C. Y.; Meng, H. F.; Chen, E. C.; Horng, S. F.; Hsu, C. S. Polymer solar cell by blade coating. Org. Electron. 2009, 10, 741–746.

[13]

Wang, L.; Yu, F.; Zhao, H.; Wang, Y. F.; Gu, T. F.; Su, W. Y.; Liang, Q. B.; Tang, Z. F.; Wu, H. B.; Hou, L. T. Impact of charge generation and extraction on photovoltaic performances of spin- and blade-as well as spray-coated organic solar cells. Org. Electron. 2022, 101, 106423.

[14]

Tsai, P. T.; Lin, K. C.; Wu, C. Y.; Liao, C. H.; Lin, M. C.; Wong, Y. Q.; Meng, H. F.; Chang, C. Y.; Wang, C. L.; Huang, Y. F. et al. Toward long-term stable and efficient large-area organic solar cells. ChemSusChem 2017, 10, 2778–2787.

[15]

Zhao, W. C.; Zhang, S. Q.; Zhang, Y.; Li, S. S.; Liu, X. Y.; He, C.; Zheng, Z.; Hou, J. H. Environmentally friendly solvent-processed organic solar cells that are highly efficient and adaptable for the blade-coating method. Adv. Mater. 2018, 30, 1704837.

[16]

Guan, W.; Yuan, D.; Wu, J. T.; Zhou, X. B.; Zhao, H.; Guo, F.; Zhang, L. J.; Zhou, K.; Ma, W.; Cai, W. Z. et al. Blade-coated organic solar cells from non-halogenated solvent offer 17% efficiency. J. Semicond. 2021, 42, 030502.

[17]

Zhang, Y.; Liu, K.; Huang, J. M.; Xia, X. X.; Cao, J. P.; Zhao, G. M.; Fong, P. W. K.; Zhu, Y.; Yan, F.; Yang, Y. et al. Graded bulk-heterojunction enables 17% binary organic solar cells via nonhalogenated open air coating. Nat. Commun. 2021, 12, 4815.

[18]

Li, H. J.; Liu, S. Q.; Wu, X. T.; Qi, Q. C.; Zhang, H. Y.; Meng, X. C.; Hu, X. T.; Ye, L.; Chen, Y. W. A general enlarging shear impulse approach to green printing large-area and efficient organic photovoltaics. Energy Environ. Sci. 2022, 15, 2130–2138.

[19]

Tsai, P. T.; Yu, K. C.; Chang, C. J.; Horng, S. F.; Meng, H. F. Large-area organic solar cells by accelerated blade coating. Org. Electron. 2015, 22, 166–172.

[20]

Zhang, K.; Chen, Z. M.; Armin, A.; Dong, S.; Xia, R. X.; Yip, H. L.; Shoaee, S.; Huang, F.; Cao, Y. Efficient large area organic solar cells processed by blade-coating with single-component green solvent. Sol. RRL 2018, 2, 1700169.

[21]

Zhao, W. C.; Zhang, Y.; Zhang, S. Q.; Li, S. S.; He, C.; Hou, J. H. Vacuum-assisted annealing method for high efficiency printable large-area polymer solar cell modules. J. Mater. Chem. C 2019, 7, 3206–3211.

[22]

Sun, R.; Wu, Q.; Guo, J.; Wang, T.; Wu, Y.; Qiu, B. B.; Luo, Z. H.; Yang, W. Y.; Hu, Z. C.; Guo, J. et al. A layer-by-layer architecture for printable organic solar cells overcoming the scaling lag of module efficiency. Joule 2020, 4, 407–419.

[23]

Distler, A.; Brabec, C. J.; Egelhaaf, H. J. Organic photovoltaic modules with new world record efficiencies. Prog. Photovolt. Res. Appl. 2021, 29, 24–31.

[24]

Fan, J. Y.; Liu, Z. X.; Rao, J.; Yan, K. R.; Chen, Z.; Ran, Y. X.; Yan, B. Y.; Yao, J. Z.; Lu, G. H.; Zhu, H. M. et al. High-performance organic solar modules via bilayer-merged-annealing assisted blade coating. Adv. Mater. 2022, 34, 2110569.

[25]

Wang, G. D.; Adil, M. A.; Zhang, J. Q.; Wei, Z. X. Large-area organic solar cells: Material requirements, modular designs, and printing methods. Adv. Mater. 2019, 31, 1805089.

[26]

Deng, Y. H.; Peng, E.; Shao, Y. C.; Xiao, Z. G.; Dong, Q. F.; Huang, J. S. Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers. Energy Environ. Sci. 2015, 8, 1544–1550.

[27]

Becerril, H. A.; Roberts, M. E.; Liu, Z. H.; Locklin, J.; Bao, Z. N. High-performance organic thin-film transistors through solution-sheared deposition of small-molecule organic semiconductors. Adv. Mater. 2008, 20, 2588–2594.

[28]

Giri, G.; Verploegen, E.; Mannsfeld, S. C. B.; Atahan-Evrenk, S.; Kim, D. H.; Lee, S. Y.; Becerril, H. A.; Aspuru-Guzik, A.; Toney, M. F.; Bao, Z. N. Tuning charge transport in solution-sheared organic semiconductors using lattice strain. Nature 2011, 480, 504–508.

[29]

Gu, X. D.; Zhou, Y.; Gu, K.; Kurosawa, T.; Guo, Y. K.; Li, Y. K.; Lin, H. R.; Schroeder, B. C.; Yan, H. P.; Molina-Lopez, F. et al. Roll-to-roll printed large-area all-polymer solar cells with 5% efficiency based on a low crystallinity conjugated polymer blend. Adv. Energy Mater. 2017, 7, 1602742.

[30]

Jiang, C. Y.; Chellappan, V.; Goh, W. P.; Zhang, J. Investigating coating method induced vertical phase distribution in polymer-fullerene organic solar cells. Sol. Energy Mater. Sol. Cells 2018, 179, 241–246.

[31]

Pokuri, B. S. S.; Sit, J.; Wodo, O.; Baran, D.; Ameri, T.; Brabec, C. J.; Moule, A. J.; Ganapathysubramanian, B. Nanoscale morphology of doctor bladed versus spin-coated organic photovoltaic films. Adv. Energy Mater. 2017, 7, 1701269.

[32]

Zhang, L.; Zhao, H.; Lin, B. J.; Yuan, J.; Xu, X. B.; Wu, J. N.; Zhou, K.; Guo, X.; Zhang, M. J.; Ma, W. A blade-coated highly efficient thick active layer for non-fullerene organic solar cells. J. Mater. Chem. A 2019, 7, 22265–22273.

[33]

Li, Y. Z.; Liu, H.; Wu, J.; Tang, H.; Wang, H. L.; Yang, Q. Q.; Fu, Y. Y.; Xie, Z. Y. Additive and high-temperature processing boost the photovoltaic performance of nonfullerene organic solar cells fabricated with blade coating and nonhalogenated solvents. ACS Appl. Mater. Interfaces 2021, 13, 10239–10248.

[34]

Yuan, J.; Liu, D. J.; Zhao, H.; Lin, B. J.; Zhou, X. B.; Naveed, H. B.; Zhao, C.; Zhou, K.; Tang, Z.; Chen, F. et al. Patterned blade coating strategy enables the enhanced device reproducibility and optimized morphology of organic solar cells. Adv. Energy Mater. 2021, 11, 2100098.

[35]

Yoon, S.; Shin, E. Y.; Cho, N. K.; Park, S.; Woo, H. Y.; Son, H. J. Progress in morphology control from fullerene to nonfullerene acceptors for scalable high-performance organic photovoltaics. J. Mater. Chem. A 2021, 9, 24729–24758.

[36]

Zhang, B.; Yang, F.; Chen, S. S.; Chen, H. Y.; Zeng, G.; Shen, Y. X.; Li, Y. W.; Li, Y. F. Fluid mechanics inspired sequential blade-coating for high-performance large-area organic solar modules. Adv. Funct. Mater. 2022, 32, 2202011.

[37]

Gu, X. D.; Shaw, L.; Gu, K.; Toney, M. F.; Bao, Z. N. The meniscus-guided deposition of semiconducting polymers. Nat. Commun. 2018, 9, 534.

[38]

Le Berre, M.; Chen, Y.; Baigl, D. From convective assembly to Landau–Levich deposition of multilayered phospholipid films of controlled thickness. Langmuir 2009, 25, 2554–2557.

[39]

Xiao, Y. F.; Zuo, C. T.; Zhong, J. X.; Wu, W. Q.; Shen, L.; Ding, L. M. Large-area blade-coated solar cells: Advances and perspectives. Adv. Energy Mater. 2021, 11, 2100378.

[40]

Park, S. H.; Park, S.; Lee, S.; Kim, J.; Ahn, H.; Kim, B. J.; Chae, B.; Son, H. J. Developement of highly efficient large area organic photovoltaic module: Effects of nonfullerene acceptor. Nano Energy 2020, 77, 105147.

[41]

Chen, E. C.; Tsai, P. T.; Chang, B. J.; Wang, C. M.; Meng, H. F.; Tsai, J. Y.; Chang, Y. F.; Chen, Z. K.; Li, C. H.; Hsu, Y. H. et al. Multilayer rapid-drying blade coating for organic solar cells by low boiling point solvents. Jpn. J. Appl. Phys. 2014, 53, 062301.

[42]

Huang, K. M.; Wong, Y. Q.; Lin, M. C.; Chen, C. H.; Liao, C. H.; Chen, J. Y.; Huang, Y. H.; Chang, Y. F.; Tsai, P. T.; Chen, S. H. et al. Highly efficient and stable organic solar cell modules processed by blade coating with 5.6% module efficiency and active area of 216 cm2. Prog. Photovolt. Res. Appl. 2019, 27, 264–274.

[43]

Lin, Y. B.; Yu, L. Y.; Xia, Y. X.; Firdaus, Y.; Dong, S.; Müller, C.; Inganäs, O.; Huang, F.; Anthopoulos, T. D.; Zhang, F. L. et al. One-step blade-coated highly efficient nonfullerene organic solar cells with a self-assembled interfacial layer enabled by solvent vapor annealing. Sol. RRL 2019, 3, 1900179.

[44]

Sánchez-Díaz, A.; Rodríguez-Martínez, X.; Córcoles-Guija, L.; Mora-Martín, G.; Campoy-Quiles, M. High-throughput multiparametric screening of solution processed bulk heterojunction solar cells. Adv. Electron. Mater. 2018, 4, 1700477.

[45]

Dörling, B.; Vohra, V.; Dao, T. T.; Garriga, M.; Murata, H.; Campoy-Quiles, M. Uniaxial macroscopic alignment of conjugated polymer systems by directional crystallization during blade coating. J. Mater. Chem. C 2014, 2, 3303–3310.

[46]

Rodríguez-Martínez, X.; Sevim, S.; Xu, X. F.; Franco, C.; Pamies-Puig, P.; Córcoles-Guija, L.; Rodriguez-Trujillo, R.; Campo, F. J.; Rodriguez San Miguel, D.; deMello, A. J. et al. Microfluidic-assisted blade coating of compositional libraries for combinatorial applications: The case of organic photovoltaics. Adv. Energy Mater. 2020, 10, 2001308.

[47]

Zhong, M. Y.; Li, Y. X.; Du, G. X.; Li, Y. Z.; Chang, K.; Lau, T. K.; Lu, X. H.; Sun, H. L.; Guo, X. G.; Guo, Y. F. et al. Soft porous blade printing of nonfullerene organic solar cells. ACS Appl. Mater. Interfaces 2020, 12, 25843–25852.

[48]

Li, Y. Z.; Deng, L. L.; Du, G. X.; Li, Y. X.; Zhao, X. Y.; Deng, W. W. Additive-free organic solar cells with enhanced efficiency enabled by unidirectional printing flow of high shear rate. Org. Electron. 2021, 97, 106274.

[49]

Chen, Y. S.; Wan, X. J.; Long, G. K. High performance photovoltaic applications using solution-processed small molecules. Acc. Chem. Res. 2013, 46, 2645–2655.

[50]

Tsai, P. T.; Meng, H. F.; Chen, Y. S.; Kan, B.; Horng, S. F. Enhancing efficiency for additive-free blade-coated small-molecule solar cells by thermal annealing. Org. Electron. 2016, 37, 305–311.

[51]

Wang, J. W.; Cui, Y.; Xu, Y.; Xian, K. H.; Bi, P. Q.; Chen, Z. H.; Zhou, K. K.; Ma, L. J.; Zhang, T.; Yang, Y. et al. A new polymer donor enables binary all-polymer organic photovoltaic cells with 18% efficiency and excellent mechanical robustness. Adv. Mater. 2022, 34, 2205009.

[52]

Liu, Y. F.; Yangui, A.; Zhang, R.; Kiligaridis, A.; Moons, E.; Gao, F.; Inganäs, O.; Scheblykin, I. G.; Zhang, F. L. In-situ optical studies on morphology formation in organic photovoltaic blends. Small Methods 2021, 5, 2100585.

[53]

Chen, D.; Liu, S. Q.; Huang, B.; Oh, J.; Wu, F. Y.; Liu, J. B.; Yang, C.; Chen, L.; Chen, Y. W. Rational regulation of the molecular aggregation enables a facile blade-coating process of large-area all-polymer solar cells with record efficiency. Small 2022, 18, 2200734.

[54]

Wu, X. M.; Lan, S. Q.; Zhang, G. C.; Chen, Q. Z.; Chen, H. P.; Guo, T. L. Morphology of a ternary blend solar cell based on small molecule:conjugated polymer:fullerene fabricated by blade coating. Adv. Funct. Mater. 2017, 27, 1703268.

[55]

Feng, H. R.; Dai, Y. J.; Guo, L. H.; Wang, D.; Dong, H.; Liu, Z. H.; Zhang, L.; Zhu, Y. J.; Su, C.; Chen, Y. S. et al. Exploring ternary organic photovoltaics for the reduced nonradiative recombination and improved efficiency over 17.23% with a simple large-bandgap small molecular third component. Nano Res. 2022, 15, 3222–3229.

[56]

Hu, H. W.; Ye, L.; Ghasemi, M.; Balar, N.; Rech, J. J.; Stuard, S. J.; You, W.; O’Connor, B. T.; Ade, H. Highly efficient, stable, and ductile ternary nonfullerene organic solar cells from a two-donor polymer blend. Adv. Mater. 2019, 31, 1808279.

[57]

Xing, Z.; Meng, X. C.; Sun, R.; Hu, T.; Huang, Z. Q.; Min, J.; Hu, X. T.; Chen, Y. W. An effective method for recovering nonradiative recombination loss in scalable organic solar cells. Adv. Funct. Mater. 2020, 30, 2000417.

[58]

Zhu, C.; Huang, H.; Jia, Z. R.; Cai, F. F.; Li, J.; Yuan, J.; Meng, L.; Peng, H. J.; Zhang, Z. J.; Zou, Y. P. et al. Spin-coated 10.46% and blade-coated 9.52% of ternary semitransparent organic solar cells with 26.56% average visible transmittance. Sol. Energy 2020, 204, 660–666.

[59]

Zhang, L.; Xu, X. B.; Lin, B. J.; Zhao, H.; Li, T. F.; Xin, J. M.; Bi, Z. Z.; Qiu, G. X.; Guo, S. W.; Zhou, K. et al. Achieving balanced crystallinity of donor and acceptor by combining blade-coating and ternary strategies in organic solar cells. Adv. Mater. 2018, 30, 1805041.

[60]

Ongul, F.; Yuksel, S. A.; Allahverdi, C.; Bozar, S.; Kazici, M.; Gunes, S. Influences of CdSe NCs on the photovoltaic parameters of BHJ organic solar cells. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 194, 50–56.

[61]

Zhang, X. N.; Li, C.; Xu, J. Q.; Wang, R.; Song, J. L.; Zhang, H.; Li, Y. X.; Jing, Y. N.; Li, S. L.; Wu, G. B. et al. High fill factor organic solar cells with increased dielectric constant and molecular packing density. Joule 2022, 6, 444–457.

[62]

Bi, P. Q.; Zhang, S. Q.; Chen, Z. H.; Xu, Y.; Cui, Y.; Zhang, T.; Ren, J. Z.; Qin, J. Z.; Hong, L.; Hao, X. T. et al. Reduced non-radiative charge recombination enables organic photovoltaic cell approaching 19% efficiency. Joule 2021, 5, 2408–2419.

[63]

Zhang, G. C.; Lin, F. R.; Qi, F.; Heumüller, T.; Distler, A.; Egelhaaf, H. J.; Li, N.; Chow, P. C. Y.; Brabec, C. J.; Jen, A. K. Y. et al. Renewed prospects for organic photovoltaics. Chem. Rev. 2022, 122, 14180–14274.

[64]

Ayzner, A. L.; Tassone, C. J.; Tolbert, S. H.; Schwartz, B. J. Reappraising the need for bulk heterojunctions in polymer-fullerene photovoltaics: The role of carrier transport in all-solution-processed P3HT/PCBM bilayer solar cells. J. Phys. Chem. C 2009, 113, 20050–20060.

[65]

Zhan, L. L.; Li, S. X.; Xia, X. X.; Li, Y. K.; Lu, X. H.; Zuo, L. J.; Shi, M. M.; Chen, H. Z. Layer-by-layer processed ternary organic photovoltaics with efficiency over 18%. Adv. Mater. 2021, 33, 2007231.

[66]

Yang, Y.; Feng, E. M.; Li, H. Y.; Shen, Z. C.; Liu, W. R.; Guo, J. B.; Luo, Q.; Zhang, J. D.; Lu, G. H.; Ma, C. Q. et al. Layer-by-layer slot-die coated high-efficiency organic solar cells processed using twin boiling point solvents under ambient condition. Nano Res. 2021, 14, 4236–4242.

[67]

Wang, Y. L.; Zhu, Q. L.; Naveed, H. B.; Zhao, H.; Zhou, K.; Ma, W. Sequential blade-coated acceptor and donor enables simultaneous enhancement of efficiency, stability, and mechanical properties for organic solar cells. Adv. Energy Mater. 2020, 10, 1903609.

[68]

Wang, Y. L.; Wang, X. H.; Lin, B. J.; Bi, Z. Z.; Zhou, X. B.; Naveed, H. B.; Zhou, K.; Yan, H. P.; Tang, Z.; Ma, W. Achieving balanced crystallization kinetics of donor and acceptor by sequential-blade coated double bulk heterojunction organic solar cells. Adv. Energy Mater. 2020, 10, 2000826.

[69]

Chochos, C. L.; Drakopoulou, S.; Katsouras, A.; Squeo, B. M.; Sprau, C.; Colsmann, A.; Gregoriou, V. G.; Cando, A. P.; Allard, S.; Scherf, U. et al. Beyond donor-acceptor (D-A) approach: Structure-optoelectronic properties-organic photovoltaic performance correlation in new D-A1-D-A2 low-bandgap conjugated polymers. Macromol. Rapid Commun. 2017, 38, 1600720.

[70]

Chochos, C. L.; Katsouras, A.; Gasparini, N.; Koulogiannis, C.; Ameri, T.; Brabec, C. J.; Avgeropoulos, A. Rational design of high-performance wide-bandgap (≈ 2 eV) polymer semiconductors as electron donors in organic photovoltaics exhibiting high open circuit voltages (≈ 1 V). Macromol. Rapid Commun. 2017, 38, 1600614.

[71]

Wu, Q.; Wang, W.; Wu, Y.; Chen, Z.; Guo, J.; Sun, R.; Guo, J.; Yang, Y.; Min, J. High-performance all-polymer solar cells with a pseudo-bilayer configuration enabled by a stepwise optimization strategy. Adv. Funct. Mater. 2021, 31, 2010411.

[72]

Sun, R.; Guo, J.; Wu, Q.; Zhang, Z. H.; Yang, W. Y.; Guo, J.; Shi, M. M.; Zhang, Y. H.; Kahmann, S.; Ye, L. et al. A multi-objective optimization-based layer-by-layer blade-coating approach for organic solar cells: Rational control of vertical stratification for high performance. Energy Environ. Sci. 2019, 12, 3118–3132.

[73]

Li, S. L.; Zhang, H.; Yue, S. L.; Yu, X.; Zhou, H. Q. Recent advances in non-fullerene organic photovoltaics enabled by green solvent processing. Nanotechnology 2022, 33, 072002.

[74]

Han, X. N.; Zhu, J. S.; Xiao, Y. Q.; Jiang, H. T.; Zhang, Z. Z.; Wang, J. Y.; Li, Z.; Lin, Y. Z.; Lu, X. H.; Zhan, X. W. An alkoxy-solubilizing decacyclic electron acceptor for efficient ecofriendly as-cast blade-coated organic solar cells. Sol. RRL 2020, 4, 2000108.

[75]

Kuznetsov, P. M.; Nikitenko, S. L.; Kuznetsov, I. E.; Proshin, P. I.; Revina, D. V.; Troshin, P. A.; Akkuratov, A. V. Thiazolothiazole-based conjugated polymers for blade-coated organic solar cells processed from an environment-friendly solvent. Tetrahedron Lett. 2020, 61, 152037.

[76]

Tait, J. G.; Merckx, T.; Li, W. Q.; Wong, C.; Gehlhaar, R.; Cheyns, D.; Turbiez, M.; Heremans, P. Determination of solvent systems for blade coating thin film photovoltaics. Adv. Funct. Mater. 2015, 25, 3393–3398.

[77]

Bouzid, H.; Prosa, M.; Bolognesi, M.; Chehata, N.; Gedefaw, D.; Albonetti, C.; Andersson, M. R.; Muccini, M.; Bouazizi, A.; Seri, M. Impact of environmentally friendly processing solvents on the properties of blade-coated polymer solar cells. J. Polym. Sci. A:Polym. Chem. 2019, 57, 487–494.

[78]

Ye, L.; Xiong, Y.; Zhang, Q. Q.; Li, S. S.; Wang, C.; Jiang, Z.; Hou, J. H.; You, W.; Ade, H. Surpassing 10% efficiency benchmark for nonfullerene organic solar cells by scalable coating in air from single nonhalogenated solvent. Adv. Mater. 2018, 30, 1705485.

[79]

Dong, S.; Zhang, K.; Xie, B. M.; Xiao, J. Y.; Yip, H. L.; Yan, H.; Huang, F.; Cao, Y. High-performance large-area organic solar cells enabled by sequential bilayer processing via nonhalogenated solvents. Adv. Energy Mater. 2019, 9, 1802832.

[80]

Zhang, J. Y.; Zhang, L. F.; Wang, X. K.; Xie, Z. J.; Hu, L.; Mao, H. D.; Xu, G. D.; Tan, L. C.; Chen, Y. W. Reducing photovoltaic property loss of organic solar cells in blade-coating by optimizing micro-nanomorphology via nonhalogenated solvent. Adv. Energy Mater. 2022, 12, 2200165.

[81]

McDowell, C.; Abdelsamie, M.; Toney, M. F.; Bazan, G. C. Solvent additives: Key morphology-directing agents for solution-processed organic solar cells. Adv. Mater. 2018, 30, 1707114.

[82]

Shin, N.; Richter, L. J.; Herzing, A. A.; Kline, R. J.; DeLongchamp, D. M. Effect of processing additives on the solidification of blade-coated polymer/fullerene blend films via in-situ structure measurements. Adv. Energy Mater. 2013, 3, 938–948.

[83]

Liu, F.; Zhao, W.; Tumbleston, J. R.; Wang, C.; Gu, Y.; Wang, D.; Briseno, A. L.; Ade, H.; Russell, T. P. Understanding the morphology of PTB7:PCBM blends in organic photovoltaics. Adv. Energy Mater. 2014, 4, 1301377.

[84]

Sundaresan, C.; Alem, S.; Radford, C. L.; Grant, T. M.; Kelly, T. L.; Lu, J. P.; Tao, Y.; Lessard, B. H. Changes in optimal ternary additive loading when processing large area organic photovoltaics by spin- versus blade-coating methods. Sol. RRL 2021, 5, 2100432.

[85]

Lin, Y. B.; Jin, Y. Z.; Dong, S.; Zheng, W. H.; Yang, J. Y.; Liu, A. L.; Liu, F.; Jiang, Y. F.; Russell, T. P.; Zhang, F. L. et al. Printed nonfullerene organic solar cells with the highest efficiency of 95%. Adv. Energy Mater. 2018, 8, 1701942.

[86]

Lee, S.; Park, K. H.; Lee, J. H.; Back, H.; Sung, M. J.; Lee, J.; Kim, J.; Kim, H.; Kim, Y. H.; Kwon, S. K. et al. Achieving thickness-insensitive morphology of the photoactive layer for printable organic photovoltaic cells via side chain engineering in nonfullerene acceptors. Adv. Energy Mater. 2019, 9, 1900044.

[87]

Pelse, I.; Hernandez, J. L.; Engmann, S.; Herzing, A. A.; Richter, L. J.; Reynolds, J. R. Cosolvent effects when blade-coating a low-solubility conjugated polymer for bulk heterojunction organic photovoltaics. ACS Appl. Mater. Interfaces 2020, 12, 27416–27424.

[88]

Zhang, L.; Lin, B. J.; Hu, B.; Xu, X. B.; Ma, W. Blade-cast nonfullerene organic solar cells in air with excellent morphology, efficiency, and stability. Adv. Mater. 2018, 30, 1800343.

[89]

Zhang, L.; Zhao, H.; Yuan, J.; Lin, B. J.; Xing, Z.; Meng, X. C.; Ke, L. L.; Hu, X. T.; Ma, W.; Yuan, Y. B. Blade-coated efficient and stable large-area organic solar cells with optimized additive. Org. Electron. 2020, 83, 105771.

[90]

Li, Y. X.; Ding, J. W.; Liang, C.; Zhang, X. N.; Zhang, J. Q.; Jakob, D. S.; Wang, B. X.; Li, X.; Zhang, H.; Li, L. N. et al. Nanoscale heterogeneous distribution of surface energy at interlayers in organic bulk-heterojunction solar cells. Joule 2021, 5, 3154–3168.

[91]

Bishnoi, S.; Datt, R.; Arya, S.; Gupta, S.; Gupta, R.; Tsoi, W. C.; Sharma, S. N.; Patole, S. P.; Gupta, V. Engineered cathode buffer layers for highly efficient organic solar cells: A review. Adv. Mater. Interfaces 2022, 9, 2101693.

[92]

Yang, Y.; Wang, J. W.; Bi, P. Q.; Kang, Q.; Zheng, Z.; Xu, B. W.; Hou, J. H. Universal hole transporting material via mutual doping for conventional, inverted, and blade-coated large-area organic solar cells. Chem. Mater. 2022, 34, 6312–6322.

[93]

Kang, Q.; Yang, B.; Xu, Y.; Xu, B. W.; Hou, J. H. Printable MoOx anode interlayers for organic solar cells. Adv. Mater. 2018, 30, 1801718.

[94]

Kang, Q.; Liao, Q.; Xu, Y.; Xu, L.; Zu, Y. F.; Li, S. S.; Xu, B. W.; Hou, J. H. p-Doped conducting polyelectrolyte as an anode interlayer enables high efficiency for 1 cm2 printed organic solar cells. ACS Appl. Mater. Interfaces 2019, 11, 20205–20213.

[95]

Kang, Q.; Ye, L.; Xu, B. W.; An, C. B.; Stuard, S. J.; Zhang, S. Q.; Yao, H. F.; Ade, H.; Hou, J. H. A printable organic cathode interlayer enables over 13% efficiency for 1-cm2 organic solar cells. Joule 2019, 3, 227–239.

[96]

Bai, Y. M.; Zhao, C. Y.; Zhang, S.; Zhang, S. Q.; Yu, R. N.; Hou, J. H.; Tan, Z. A.; Li, Y. F. Printable SnO2 cathode interlayer with up to 500 nm thickness-tolerance for high-performance and large-area organic solar cells. Sci. China Chem. 2020, 63, 957–965.

[97]

Yang, Y.; Kang, Q.; Liao, Q.; Zheng, Z.; He, C.; Xu, B. W.; Hou, J. H. Inorganic molecular clusters with facile preparation and neutral pH for efficient hole extraction in organic solar cells. ACS Appl. Mater. Interfaces 2020, 12, 39462–39470.

[98]

Shafiey Dehaj, M.; Ahmadi, M.; Ghazanfarpour, S. Inverted bulk heterojunction organic solar cells using optimization of active layer deposition via controlling of doctor blade parameters. Surf. Interfaces 2020, 21, 100694.

[99]

Guo, X. T.; Li, H. Y.; Han, Y. F.; Yang, Y.; Luo, Q.; Ma, C. Q.; Yang, J. L. Fully doctor-bladed efficient organic solar cells processed under ambient condition. Org. Electron. 2020, 82, 105725.

[100]

Pérez-Gutiérrez, E.; Lozano, J.; Gaspar-Tánori, J.; Maldonado, J. L.; Gómez, B.; López, L.; Amores-Tapia, L. F.; Barbosa-García, O.; Percino, M. J. Organic solar cells all made by blade and slot-die coating techniques. Solar Energy 2017, 146, 79–84.

[101]

Koppitz, M.; Wegner, E.; Rödlmeier, T.; Colsmann, A. Hot-pressed hybrid electrodes comprising silver nanowires and conductive polymers for mechanically robust, all-doctor-bladed semitransparent organic solar cells. Energy Technol. 2018, 6, 1275–1282.

[102]

Byun, W. B.; Lee, S. K.; Lee, J. C.; Moon, S. J.; Shin, W. S. Bladed organic photovoltaic cells. Curr. Appl. Phys. 2011, 11, S179–S184.

[103]

Chang, J. H.; Chen, Y. H.; Lin, H. W.; Lin, Y. T.; Meng, H. F.; Chen, E. C. Highly efficient inverted rapid-drying blade-coated organic solar cells. Org. Electron. 2012, 13, 705–709.

[104]

Lim, S. L.; Chen, E. C.; Chen, C. Y.; Ong, K. H.; Chen, Z. K.; Meng, H. F. High performance organic photovoltaic cells with blade-coated active layers. Sol. Energy Mater. Sol. Cells 2012, 107, 292–297.

[105]

Xiong, K.; Hou, L. T.; Wu, M. X.; Huo, Y. C.; Mo, W. S.; Yuan, Y. F.; Sun, S.; Xu, W.; Wang, E. G. From spin coating to doctor blading: A systematic study on the photovoltaic performance of an isoindigo-based polymer. Sol. Energy Mater. Sol. Cells 2015, 132, 252–259.

[106]

Lee, Y. H.; Tsai, P. T.; Chang, C. J.; Meng, H. F.; Horng, S. F.; Zan, H. W.; Lin, H. C.; Liu, H. C.; Tseng, M. R.; Yeh, H. C. Blade-coated sol-gel indium-gallium-zinc-oxide for inverted polymer solar cell. AIP Adv. 2016, 6, 115006.

[107]

Zhao, K.; Hu, H.; Spada, E.; Jagadamma, L. K.; Yan, B.; Abdelsamie, M.; Yang, Y.; Yu, L.; Munir, R.; Li, R. et al. Highly efficient polymer solar cells with printed photoactive layer: Rational process transfer from spin-coating. J. Mater. Chem. A 2016, 4, 16036–16046.

[108]

Ro, H. W.; Downing, J. M.; Engmann, S.; Herzing, A. A.; DeLongchamp, D. M.; Richter, L. J.; Mukherjee, S.; Ade, H.; Abdelsamie, M.; Jagadamma, L. K. et al. Morphology changes upon scaling a high-efficiency, solution-processed solar cell. Energy Environ. Sci. 2016, 9, 2835–2846.

[109]

Hernandez, J. L.; Deb, N.; Wolfe, R. M. W.; Lo, C. K.; Engmann, S.; Richter, L. J.; Reynolds, J. R. Simple transfer from spin coating to blade coating through processing aggregated solutions. J. Mater. Chem. A 2017, 5, 20687–20695.

[110]

Jin, H.; Tao, C.; Velusamy, M.; Aljada, M.; Zhang, Y. L.; Hambsch, M.; Burn, P. L.; Meredith, P. Efficient, large area ITO-and-PEDOT-free organic solar cell sub-modules. Adv. Mater. 2012, 24, 2572–2577.

[111]

Lim, S. L.; Ong, K. H.; Li, J.; Yang, L.; Chang, Y. F.; Meng, H. F.; Wang, X. Z.; Chen, Z. K. Efficient, large area organic photovoltaic modules with active layers processed with non-halogenated solvents in air. Org. Electron. 2017, 43, 55–63.

[112]

Sun, R.; Guo, J.; Sun, C. K.; Wang, T.; Luo, Z. H.; Zhang, Z. H.; Jiao, X. C.; Tang, W. H.; Yang, C. L.; Li, Y. F. et al. A universal layer-by-layer solution-processing approach for efficient non-fullerene organic solar cells. Energy Environ. Sci. 2019, 12, 384–395.

[113]

Dong, S.; Jia, T.; Zhang, K.; Jing, J. H.; Huang, F. Single-component non-halogen solvent-processed high-performance organic solar cell module with efficiency over 14%. Joule 2020, 4, 2004–2016.

[114]

Liao, C. Y.; Chen, Y.; Lee, C. C.; Wang, G.; Teng, N. W.; Lee, C. H.; Li, W. L.; Chen, Y. K.; Li, C. H.; Ho, H. L. et al. Processing strategies for an organic photovoltaic module with over 10% efficiency. Joule 2020, 4, 189–206.

[115]

Chen, H. Y.; Zhang, R.; Chen, X. B.; Zeng, G.; Kobera, L.; Abbrent, S.; Zhang, B.; Chen, W. J.; Xu, G. Y.; Oh, J. et al. A guest-assisted molecular-organization approach for > 17% efficiency organic solar cells using environmentally friendly solvents. Nat. Energy 2021, 6, 1045–1053.

Nano Research
Pages 11571-11588
Cite this article:
Zhang X, Zhang H, Li S, et al. Development and application of blade-coating technique in organic solar cells. Nano Research, 2023, 16(9): 11571-11588. https://doi.org/10.1007/s12274-023-5425-9
Topics:
Part of a topical collection:

1991

Views

13

Crossref

14

Web of Science

14

Scopus

0

CSCD

Altmetrics

Received: 24 October 2022
Revised: 25 November 2022
Accepted: 18 December 2022
Published: 26 March 2023
© Tsinghua University Press 2023
Return