Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Due to the characteristics of lower material waste, higher crystallinity, roll-to-roll compatibility, and high-throughput continuous processing, blade-coating has been widely applied in the preparation of large-area organic solar cells. In this paper, the technique of blade-coating is introduced, including the effects of blading speed, substrate temperature, and other technological innovations during the process of blade-coating. Besides, the recent progress of blade-coating in organic solar cells is summarized and the active layer prepared by a blade-coating method is introduced in detail, including materials, processing methods, solvents, and additives. The interface layer and electrodes prepared by the blade-coating method are also discussed. Finally, some perspectives on the blade-coating method are proposed. In the foreseeable future, blade-coating will become the core of batch production of large-area organic solar cells, so as to make organic solar cells more competitive.
He, C. L.; Pan, Y. W.; Ouyang, Y. N.; Shen, Q.; Gao, Y.; Yan, K. R.; Fang, J.; Chen, Y. Y.; Ma, C. Q.; Min, J. et al. Manipulating the D: A interfacial energetics and intermolecular packing for 19.2% efficiency organic photovoltaics. Energy Environ. Sci. 2022, 15, 2537–2544.
Sun, R.; Wu, Y.; Yang, X. R.; Gao, Y.; Chen, Z.; Li, K.; Qiao, J. W.; Wang, T.; Guo, J.; Liu, C. et al. Single-junction organic solar cells with 19.17% efficiency enabled by introducing one asymmetric guest acceptor. Adv. Mater. 2022, 34, 2110147.
Zhu, L.; Zhang, M.; Xu, J. Q.; Li, C.; Yan, J.; Zhou, G. Q.; Zhong, W. K.; Hao, T. Y.; Song, J. L.; Xue, X. N. et al. Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nat. Mater. 2022, 21, 656–663.
Liu, S. Q.; Chen, D.; Zhou, W. H.; Yu, Z.; Chen, L.; Liu, F.; Chen, Y. W. Vertical distribution to optimize active layer morphology for efficient all-polymer solar cells by J71 as a compatibilizer. Macromolecules 2019, 52, 4359–4369.
Wan, J.; Zhang, L. F.; He, Q. N.; Liu, S. Q.; Huang, B.; Hu, L.; Zhou, W. H.; Chen, Y. W. High-performance pseudoplanar heterojunction ternary organic solar cells with nonfullerene alloyed acceptor. Adv. Funct. Mater. 2020, 30, 1909760.
Krebs, F. C. Fabrication and processing of polymer solar cells: A review of printing and coating techniques. Sol. Energy Mater. Sol. Cells 2009, 93, 394–412.
Bornside, D. E.; Macosko, C. W.; Scriven, L. E. Spin coating: One-dimensional model. J. Appl. Phys. 1989, 66, 5185–5193.
Liu, F.; Ferdous, S.; Schaible, E.; Hexemer, A.; Church, M.; Ding, X. D.; Wang, C.; Russell, T. P. Fast printing and in-situ morphology observation of organic photovoltaics using slot-die coating. Adv. Mater. 2015, 27, 886–891.
Na, S. I.; Seo, Y. H.; Nah, Y. C.; Kim, S. S.; Heo, H.; Kim, J. E.; Rolston, N.; Dauskardt, R. H.; Gao, M.; Lee, Y. et al. High performance roll-to-roll produced fullerene-free organic photovoltaic devices via temperature-controlled slot die coating. Adv. Funct. Mater. 2018, 29, 1805825.
Haldar, A.; Liao, K. S.; Curran, S. A. Effect of printing parameters and annealing on organic photovoltaics performance. J. Mater. Res. 2012, 27, 2079–2087.
Schilinsky, P.; Waldauf, C.; Brabec, C. J. Performance analysis of printed bulk heterojunction solar cells. Adv. Funct. Mater. 2006, 16, 1669–1672.
Chang, Y. H.; Tseng, S. R.; Chen, C. Y.; Meng, H. F.; Chen, E. C.; Horng, S. F.; Hsu, C. S. Polymer solar cell by blade coating. Org. Electron. 2009, 10, 741–746.
Wang, L.; Yu, F.; Zhao, H.; Wang, Y. F.; Gu, T. F.; Su, W. Y.; Liang, Q. B.; Tang, Z. F.; Wu, H. B.; Hou, L. T. Impact of charge generation and extraction on photovoltaic performances of spin- and blade-as well as spray-coated organic solar cells. Org. Electron. 2022, 101, 106423.
Tsai, P. T.; Lin, K. C.; Wu, C. Y.; Liao, C. H.; Lin, M. C.; Wong, Y. Q.; Meng, H. F.; Chang, C. Y.; Wang, C. L.; Huang, Y. F. et al. Toward long-term stable and efficient large-area organic solar cells. ChemSusChem 2017, 10, 2778–2787.
Zhao, W. C.; Zhang, S. Q.; Zhang, Y.; Li, S. S.; Liu, X. Y.; He, C.; Zheng, Z.; Hou, J. H. Environmentally friendly solvent-processed organic solar cells that are highly efficient and adaptable for the blade-coating method. Adv. Mater. 2018, 30, 1704837.
Guan, W.; Yuan, D.; Wu, J. T.; Zhou, X. B.; Zhao, H.; Guo, F.; Zhang, L. J.; Zhou, K.; Ma, W.; Cai, W. Z. et al. Blade-coated organic solar cells from non-halogenated solvent offer 17% efficiency. J. Semicond. 2021, 42, 030502.
Zhang, Y.; Liu, K.; Huang, J. M.; Xia, X. X.; Cao, J. P.; Zhao, G. M.; Fong, P. W. K.; Zhu, Y.; Yan, F.; Yang, Y. et al. Graded bulk-heterojunction enables 17% binary organic solar cells via nonhalogenated open air coating. Nat. Commun. 2021, 12, 4815.
Li, H. J.; Liu, S. Q.; Wu, X. T.; Qi, Q. C.; Zhang, H. Y.; Meng, X. C.; Hu, X. T.; Ye, L.; Chen, Y. W. A general enlarging shear impulse approach to green printing large-area and efficient organic photovoltaics. Energy Environ. Sci. 2022, 15, 2130–2138.
Tsai, P. T.; Yu, K. C.; Chang, C. J.; Horng, S. F.; Meng, H. F. Large-area organic solar cells by accelerated blade coating. Org. Electron. 2015, 22, 166–172.
Zhang, K.; Chen, Z. M.; Armin, A.; Dong, S.; Xia, R. X.; Yip, H. L.; Shoaee, S.; Huang, F.; Cao, Y. Efficient large area organic solar cells processed by blade-coating with single-component green solvent. Sol. RRL 2018, 2, 1700169.
Zhao, W. C.; Zhang, Y.; Zhang, S. Q.; Li, S. S.; He, C.; Hou, J. H. Vacuum-assisted annealing method for high efficiency printable large-area polymer solar cell modules. J. Mater. Chem. C 2019, 7, 3206–3211.
Sun, R.; Wu, Q.; Guo, J.; Wang, T.; Wu, Y.; Qiu, B. B.; Luo, Z. H.; Yang, W. Y.; Hu, Z. C.; Guo, J. et al. A layer-by-layer architecture for printable organic solar cells overcoming the scaling lag of module efficiency. Joule 2020, 4, 407–419.
Distler, A.; Brabec, C. J.; Egelhaaf, H. J. Organic photovoltaic modules with new world record efficiencies. Prog. Photovolt. Res. Appl. 2021, 29, 24–31.
Fan, J. Y.; Liu, Z. X.; Rao, J.; Yan, K. R.; Chen, Z.; Ran, Y. X.; Yan, B. Y.; Yao, J. Z.; Lu, G. H.; Zhu, H. M. et al. High-performance organic solar modules via bilayer-merged-annealing assisted blade coating. Adv. Mater. 2022, 34, 2110569.
Wang, G. D.; Adil, M. A.; Zhang, J. Q.; Wei, Z. X. Large-area organic solar cells: Material requirements, modular designs, and printing methods. Adv. Mater. 2019, 31, 1805089.
Deng, Y. H.; Peng, E.; Shao, Y. C.; Xiao, Z. G.; Dong, Q. F.; Huang, J. S. Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers. Energy Environ. Sci. 2015, 8, 1544–1550.
Becerril, H. A.; Roberts, M. E.; Liu, Z. H.; Locklin, J.; Bao, Z. N. High-performance organic thin-film transistors through solution-sheared deposition of small-molecule organic semiconductors. Adv. Mater. 2008, 20, 2588–2594.
Giri, G.; Verploegen, E.; Mannsfeld, S. C. B.; Atahan-Evrenk, S.; Kim, D. H.; Lee, S. Y.; Becerril, H. A.; Aspuru-Guzik, A.; Toney, M. F.; Bao, Z. N. Tuning charge transport in solution-sheared organic semiconductors using lattice strain. Nature 2011, 480, 504–508.
Gu, X. D.; Zhou, Y.; Gu, K.; Kurosawa, T.; Guo, Y. K.; Li, Y. K.; Lin, H. R.; Schroeder, B. C.; Yan, H. P.; Molina-Lopez, F. et al. Roll-to-roll printed large-area all-polymer solar cells with 5% efficiency based on a low crystallinity conjugated polymer blend. Adv. Energy Mater. 2017, 7, 1602742.
Jiang, C. Y.; Chellappan, V.; Goh, W. P.; Zhang, J. Investigating coating method induced vertical phase distribution in polymer-fullerene organic solar cells. Sol. Energy Mater. Sol. Cells 2018, 179, 241–246.
Pokuri, B. S. S.; Sit, J.; Wodo, O.; Baran, D.; Ameri, T.; Brabec, C. J.; Moule, A. J.; Ganapathysubramanian, B. Nanoscale morphology of doctor bladed versus spin-coated organic photovoltaic films. Adv. Energy Mater. 2017, 7, 1701269.
Zhang, L.; Zhao, H.; Lin, B. J.; Yuan, J.; Xu, X. B.; Wu, J. N.; Zhou, K.; Guo, X.; Zhang, M. J.; Ma, W. A blade-coated highly efficient thick active layer for non-fullerene organic solar cells. J. Mater. Chem. A 2019, 7, 22265–22273.
Li, Y. Z.; Liu, H.; Wu, J.; Tang, H.; Wang, H. L.; Yang, Q. Q.; Fu, Y. Y.; Xie, Z. Y. Additive and high-temperature processing boost the photovoltaic performance of nonfullerene organic solar cells fabricated with blade coating and nonhalogenated solvents. ACS Appl. Mater. Interfaces 2021, 13, 10239–10248.
Yuan, J.; Liu, D. J.; Zhao, H.; Lin, B. J.; Zhou, X. B.; Naveed, H. B.; Zhao, C.; Zhou, K.; Tang, Z.; Chen, F. et al. Patterned blade coating strategy enables the enhanced device reproducibility and optimized morphology of organic solar cells. Adv. Energy Mater. 2021, 11, 2100098.
Yoon, S.; Shin, E. Y.; Cho, N. K.; Park, S.; Woo, H. Y.; Son, H. J. Progress in morphology control from fullerene to nonfullerene acceptors for scalable high-performance organic photovoltaics. J. Mater. Chem. A 2021, 9, 24729–24758.
Zhang, B.; Yang, F.; Chen, S. S.; Chen, H. Y.; Zeng, G.; Shen, Y. X.; Li, Y. W.; Li, Y. F. Fluid mechanics inspired sequential blade-coating for high-performance large-area organic solar modules. Adv. Funct. Mater. 2022, 32, 2202011.
Gu, X. D.; Shaw, L.; Gu, K.; Toney, M. F.; Bao, Z. N. The meniscus-guided deposition of semiconducting polymers. Nat. Commun. 2018, 9, 534.
Le Berre, M.; Chen, Y.; Baigl, D. From convective assembly to Landau–Levich deposition of multilayered phospholipid films of controlled thickness. Langmuir 2009, 25, 2554–2557.
Xiao, Y. F.; Zuo, C. T.; Zhong, J. X.; Wu, W. Q.; Shen, L.; Ding, L. M. Large-area blade-coated solar cells: Advances and perspectives. Adv. Energy Mater. 2021, 11, 2100378.
Park, S. H.; Park, S.; Lee, S.; Kim, J.; Ahn, H.; Kim, B. J.; Chae, B.; Son, H. J. Developement of highly efficient large area organic photovoltaic module: Effects of nonfullerene acceptor. Nano Energy 2020, 77, 105147.
Chen, E. C.; Tsai, P. T.; Chang, B. J.; Wang, C. M.; Meng, H. F.; Tsai, J. Y.; Chang, Y. F.; Chen, Z. K.; Li, C. H.; Hsu, Y. H. et al. Multilayer rapid-drying blade coating for organic solar cells by low boiling point solvents. Jpn. J. Appl. Phys. 2014, 53, 062301.
Huang, K. M.; Wong, Y. Q.; Lin, M. C.; Chen, C. H.; Liao, C. H.; Chen, J. Y.; Huang, Y. H.; Chang, Y. F.; Tsai, P. T.; Chen, S. H. et al. Highly efficient and stable organic solar cell modules processed by blade coating with 5.6% module efficiency and active area of 216 cm2. Prog. Photovolt. Res. Appl. 2019, 27, 264–274.
Lin, Y. B.; Yu, L. Y.; Xia, Y. X.; Firdaus, Y.; Dong, S.; Müller, C.; Inganäs, O.; Huang, F.; Anthopoulos, T. D.; Zhang, F. L. et al. One-step blade-coated highly efficient nonfullerene organic solar cells with a self-assembled interfacial layer enabled by solvent vapor annealing. Sol. RRL 2019, 3, 1900179.
Sánchez-Díaz, A.; Rodríguez-Martínez, X.; Córcoles-Guija, L.; Mora-Martín, G.; Campoy-Quiles, M. High-throughput multiparametric screening of solution processed bulk heterojunction solar cells. Adv. Electron. Mater. 2018, 4, 1700477.
Dörling, B.; Vohra, V.; Dao, T. T.; Garriga, M.; Murata, H.; Campoy-Quiles, M. Uniaxial macroscopic alignment of conjugated polymer systems by directional crystallization during blade coating. J. Mater. Chem. C 2014, 2, 3303–3310.
Rodríguez-Martínez, X.; Sevim, S.; Xu, X. F.; Franco, C.; Pamies-Puig, P.; Córcoles-Guija, L.; Rodriguez-Trujillo, R.; Campo, F. J.; Rodriguez San Miguel, D.; deMello, A. J. et al. Microfluidic-assisted blade coating of compositional libraries for combinatorial applications: The case of organic photovoltaics. Adv. Energy Mater. 2020, 10, 2001308.
Zhong, M. Y.; Li, Y. X.; Du, G. X.; Li, Y. Z.; Chang, K.; Lau, T. K.; Lu, X. H.; Sun, H. L.; Guo, X. G.; Guo, Y. F. et al. Soft porous blade printing of nonfullerene organic solar cells. ACS Appl. Mater. Interfaces 2020, 12, 25843–25852.
Li, Y. Z.; Deng, L. L.; Du, G. X.; Li, Y. X.; Zhao, X. Y.; Deng, W. W. Additive-free organic solar cells with enhanced efficiency enabled by unidirectional printing flow of high shear rate. Org. Electron. 2021, 97, 106274.
Chen, Y. S.; Wan, X. J.; Long, G. K. High performance photovoltaic applications using solution-processed small molecules. Acc. Chem. Res. 2013, 46, 2645–2655.
Tsai, P. T.; Meng, H. F.; Chen, Y. S.; Kan, B.; Horng, S. F. Enhancing efficiency for additive-free blade-coated small-molecule solar cells by thermal annealing. Org. Electron. 2016, 37, 305–311.
Wang, J. W.; Cui, Y.; Xu, Y.; Xian, K. H.; Bi, P. Q.; Chen, Z. H.; Zhou, K. K.; Ma, L. J.; Zhang, T.; Yang, Y. et al. A new polymer donor enables binary all-polymer organic photovoltaic cells with 18% efficiency and excellent mechanical robustness. Adv. Mater. 2022, 34, 2205009.
Liu, Y. F.; Yangui, A.; Zhang, R.; Kiligaridis, A.; Moons, E.; Gao, F.; Inganäs, O.; Scheblykin, I. G.; Zhang, F. L. In-situ optical studies on morphology formation in organic photovoltaic blends. Small Methods 2021, 5, 2100585.
Chen, D.; Liu, S. Q.; Huang, B.; Oh, J.; Wu, F. Y.; Liu, J. B.; Yang, C.; Chen, L.; Chen, Y. W. Rational regulation of the molecular aggregation enables a facile blade-coating process of large-area all-polymer solar cells with record efficiency. Small 2022, 18, 2200734.
Wu, X. M.; Lan, S. Q.; Zhang, G. C.; Chen, Q. Z.; Chen, H. P.; Guo, T. L. Morphology of a ternary blend solar cell based on small molecule:conjugated polymer:fullerene fabricated by blade coating. Adv. Funct. Mater. 2017, 27, 1703268.
Feng, H. R.; Dai, Y. J.; Guo, L. H.; Wang, D.; Dong, H.; Liu, Z. H.; Zhang, L.; Zhu, Y. J.; Su, C.; Chen, Y. S. et al. Exploring ternary organic photovoltaics for the reduced nonradiative recombination and improved efficiency over 17.23% with a simple large-bandgap small molecular third component. Nano Res. 2022, 15, 3222–3229.
Hu, H. W.; Ye, L.; Ghasemi, M.; Balar, N.; Rech, J. J.; Stuard, S. J.; You, W.; O’Connor, B. T.; Ade, H. Highly efficient, stable, and ductile ternary nonfullerene organic solar cells from a two-donor polymer blend. Adv. Mater. 2019, 31, 1808279.
Xing, Z.; Meng, X. C.; Sun, R.; Hu, T.; Huang, Z. Q.; Min, J.; Hu, X. T.; Chen, Y. W. An effective method for recovering nonradiative recombination loss in scalable organic solar cells. Adv. Funct. Mater. 2020, 30, 2000417.
Zhu, C.; Huang, H.; Jia, Z. R.; Cai, F. F.; Li, J.; Yuan, J.; Meng, L.; Peng, H. J.; Zhang, Z. J.; Zou, Y. P. et al. Spin-coated 10.46% and blade-coated 9.52% of ternary semitransparent organic solar cells with 26.56% average visible transmittance. Sol. Energy 2020, 204, 660–666.
Zhang, L.; Xu, X. B.; Lin, B. J.; Zhao, H.; Li, T. F.; Xin, J. M.; Bi, Z. Z.; Qiu, G. X.; Guo, S. W.; Zhou, K. et al. Achieving balanced crystallinity of donor and acceptor by combining blade-coating and ternary strategies in organic solar cells. Adv. Mater. 2018, 30, 1805041.
Ongul, F.; Yuksel, S. A.; Allahverdi, C.; Bozar, S.; Kazici, M.; Gunes, S. Influences of CdSe NCs on the photovoltaic parameters of BHJ organic solar cells. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 194, 50–56.
Zhang, X. N.; Li, C.; Xu, J. Q.; Wang, R.; Song, J. L.; Zhang, H.; Li, Y. X.; Jing, Y. N.; Li, S. L.; Wu, G. B. et al. High fill factor organic solar cells with increased dielectric constant and molecular packing density. Joule 2022, 6, 444–457.
Bi, P. Q.; Zhang, S. Q.; Chen, Z. H.; Xu, Y.; Cui, Y.; Zhang, T.; Ren, J. Z.; Qin, J. Z.; Hong, L.; Hao, X. T. et al. Reduced non-radiative charge recombination enables organic photovoltaic cell approaching 19% efficiency. Joule 2021, 5, 2408–2419.
Zhang, G. C.; Lin, F. R.; Qi, F.; Heumüller, T.; Distler, A.; Egelhaaf, H. J.; Li, N.; Chow, P. C. Y.; Brabec, C. J.; Jen, A. K. Y. et al. Renewed prospects for organic photovoltaics. Chem. Rev. 2022, 122, 14180–14274.
Ayzner, A. L.; Tassone, C. J.; Tolbert, S. H.; Schwartz, B. J. Reappraising the need for bulk heterojunctions in polymer-fullerene photovoltaics: The role of carrier transport in all-solution-processed P3HT/PCBM bilayer solar cells. J. Phys. Chem. C 2009, 113, 20050–20060.
Zhan, L. L.; Li, S. X.; Xia, X. X.; Li, Y. K.; Lu, X. H.; Zuo, L. J.; Shi, M. M.; Chen, H. Z. Layer-by-layer processed ternary organic photovoltaics with efficiency over 18%. Adv. Mater. 2021, 33, 2007231.
Yang, Y.; Feng, E. M.; Li, H. Y.; Shen, Z. C.; Liu, W. R.; Guo, J. B.; Luo, Q.; Zhang, J. D.; Lu, G. H.; Ma, C. Q. et al. Layer-by-layer slot-die coated high-efficiency organic solar cells processed using twin boiling point solvents under ambient condition. Nano Res. 2021, 14, 4236–4242.
Wang, Y. L.; Zhu, Q. L.; Naveed, H. B.; Zhao, H.; Zhou, K.; Ma, W. Sequential blade-coated acceptor and donor enables simultaneous enhancement of efficiency, stability, and mechanical properties for organic solar cells. Adv. Energy Mater. 2020, 10, 1903609.
Wang, Y. L.; Wang, X. H.; Lin, B. J.; Bi, Z. Z.; Zhou, X. B.; Naveed, H. B.; Zhou, K.; Yan, H. P.; Tang, Z.; Ma, W. Achieving balanced crystallization kinetics of donor and acceptor by sequential-blade coated double bulk heterojunction organic solar cells. Adv. Energy Mater. 2020, 10, 2000826.
Chochos, C. L.; Drakopoulou, S.; Katsouras, A.; Squeo, B. M.; Sprau, C.; Colsmann, A.; Gregoriou, V. G.; Cando, A. P.; Allard, S.; Scherf, U. et al. Beyond donor-acceptor (D-A) approach: Structure-optoelectronic properties-organic photovoltaic performance correlation in new D-A1-D-A2 low-bandgap conjugated polymers. Macromol. Rapid Commun. 2017, 38, 1600720.
Chochos, C. L.; Katsouras, A.; Gasparini, N.; Koulogiannis, C.; Ameri, T.; Brabec, C. J.; Avgeropoulos, A. Rational design of high-performance wide-bandgap (≈ 2 eV) polymer semiconductors as electron donors in organic photovoltaics exhibiting high open circuit voltages (≈ 1 V). Macromol. Rapid Commun. 2017, 38, 1600614.
Wu, Q.; Wang, W.; Wu, Y.; Chen, Z.; Guo, J.; Sun, R.; Guo, J.; Yang, Y.; Min, J. High-performance all-polymer solar cells with a pseudo-bilayer configuration enabled by a stepwise optimization strategy. Adv. Funct. Mater. 2021, 31, 2010411.
Sun, R.; Guo, J.; Wu, Q.; Zhang, Z. H.; Yang, W. Y.; Guo, J.; Shi, M. M.; Zhang, Y. H.; Kahmann, S.; Ye, L. et al. A multi-objective optimization-based layer-by-layer blade-coating approach for organic solar cells: Rational control of vertical stratification for high performance. Energy Environ. Sci. 2019, 12, 3118–3132.
Li, S. L.; Zhang, H.; Yue, S. L.; Yu, X.; Zhou, H. Q. Recent advances in non-fullerene organic photovoltaics enabled by green solvent processing. Nanotechnology 2022, 33, 072002.
Han, X. N.; Zhu, J. S.; Xiao, Y. Q.; Jiang, H. T.; Zhang, Z. Z.; Wang, J. Y.; Li, Z.; Lin, Y. Z.; Lu, X. H.; Zhan, X. W. An alkoxy-solubilizing decacyclic electron acceptor for efficient ecofriendly as-cast blade-coated organic solar cells. Sol. RRL 2020, 4, 2000108.
Kuznetsov, P. M.; Nikitenko, S. L.; Kuznetsov, I. E.; Proshin, P. I.; Revina, D. V.; Troshin, P. A.; Akkuratov, A. V. Thiazolothiazole-based conjugated polymers for blade-coated organic solar cells processed from an environment-friendly solvent. Tetrahedron Lett. 2020, 61, 152037.
Tait, J. G.; Merckx, T.; Li, W. Q.; Wong, C.; Gehlhaar, R.; Cheyns, D.; Turbiez, M.; Heremans, P. Determination of solvent systems for blade coating thin film photovoltaics. Adv. Funct. Mater. 2015, 25, 3393–3398.
Bouzid, H.; Prosa, M.; Bolognesi, M.; Chehata, N.; Gedefaw, D.; Albonetti, C.; Andersson, M. R.; Muccini, M.; Bouazizi, A.; Seri, M. Impact of environmentally friendly processing solvents on the properties of blade-coated polymer solar cells. J. Polym. Sci. A:Polym. Chem. 2019, 57, 487–494.
Ye, L.; Xiong, Y.; Zhang, Q. Q.; Li, S. S.; Wang, C.; Jiang, Z.; Hou, J. H.; You, W.; Ade, H. Surpassing 10% efficiency benchmark for nonfullerene organic solar cells by scalable coating in air from single nonhalogenated solvent. Adv. Mater. 2018, 30, 1705485.
Dong, S.; Zhang, K.; Xie, B. M.; Xiao, J. Y.; Yip, H. L.; Yan, H.; Huang, F.; Cao, Y. High-performance large-area organic solar cells enabled by sequential bilayer processing via nonhalogenated solvents. Adv. Energy Mater. 2019, 9, 1802832.
Zhang, J. Y.; Zhang, L. F.; Wang, X. K.; Xie, Z. J.; Hu, L.; Mao, H. D.; Xu, G. D.; Tan, L. C.; Chen, Y. W. Reducing photovoltaic property loss of organic solar cells in blade-coating by optimizing micro-nanomorphology via nonhalogenated solvent. Adv. Energy Mater. 2022, 12, 2200165.
McDowell, C.; Abdelsamie, M.; Toney, M. F.; Bazan, G. C. Solvent additives: Key morphology-directing agents for solution-processed organic solar cells. Adv. Mater. 2018, 30, 1707114.
Shin, N.; Richter, L. J.; Herzing, A. A.; Kline, R. J.; DeLongchamp, D. M. Effect of processing additives on the solidification of blade-coated polymer/fullerene blend films via in-situ structure measurements. Adv. Energy Mater. 2013, 3, 938–948.
Liu, F.; Zhao, W.; Tumbleston, J. R.; Wang, C.; Gu, Y.; Wang, D.; Briseno, A. L.; Ade, H.; Russell, T. P. Understanding the morphology of PTB7:PCBM blends in organic photovoltaics. Adv. Energy Mater. 2014, 4, 1301377.
Sundaresan, C.; Alem, S.; Radford, C. L.; Grant, T. M.; Kelly, T. L.; Lu, J. P.; Tao, Y.; Lessard, B. H. Changes in optimal ternary additive loading when processing large area organic photovoltaics by spin- versus blade-coating methods. Sol. RRL 2021, 5, 2100432.
Lin, Y. B.; Jin, Y. Z.; Dong, S.; Zheng, W. H.; Yang, J. Y.; Liu, A. L.; Liu, F.; Jiang, Y. F.; Russell, T. P.; Zhang, F. L. et al. Printed nonfullerene organic solar cells with the highest efficiency of 95%. Adv. Energy Mater. 2018, 8, 1701942.
Lee, S.; Park, K. H.; Lee, J. H.; Back, H.; Sung, M. J.; Lee, J.; Kim, J.; Kim, H.; Kim, Y. H.; Kwon, S. K. et al. Achieving thickness-insensitive morphology of the photoactive layer for printable organic photovoltaic cells via side chain engineering in nonfullerene acceptors. Adv. Energy Mater. 2019, 9, 1900044.
Pelse, I.; Hernandez, J. L.; Engmann, S.; Herzing, A. A.; Richter, L. J.; Reynolds, J. R. Cosolvent effects when blade-coating a low-solubility conjugated polymer for bulk heterojunction organic photovoltaics. ACS Appl. Mater. Interfaces 2020, 12, 27416–27424.
Zhang, L.; Lin, B. J.; Hu, B.; Xu, X. B.; Ma, W. Blade-cast nonfullerene organic solar cells in air with excellent morphology, efficiency, and stability. Adv. Mater. 2018, 30, 1800343.
Zhang, L.; Zhao, H.; Yuan, J.; Lin, B. J.; Xing, Z.; Meng, X. C.; Ke, L. L.; Hu, X. T.; Ma, W.; Yuan, Y. B. Blade-coated efficient and stable large-area organic solar cells with optimized additive. Org. Electron. 2020, 83, 105771.
Li, Y. X.; Ding, J. W.; Liang, C.; Zhang, X. N.; Zhang, J. Q.; Jakob, D. S.; Wang, B. X.; Li, X.; Zhang, H.; Li, L. N. et al. Nanoscale heterogeneous distribution of surface energy at interlayers in organic bulk-heterojunction solar cells. Joule 2021, 5, 3154–3168.
Bishnoi, S.; Datt, R.; Arya, S.; Gupta, S.; Gupta, R.; Tsoi, W. C.; Sharma, S. N.; Patole, S. P.; Gupta, V. Engineered cathode buffer layers for highly efficient organic solar cells: A review. Adv. Mater. Interfaces 2022, 9, 2101693.
Yang, Y.; Wang, J. W.; Bi, P. Q.; Kang, Q.; Zheng, Z.; Xu, B. W.; Hou, J. H. Universal hole transporting material via mutual doping for conventional, inverted, and blade-coated large-area organic solar cells. Chem. Mater. 2022, 34, 6312–6322.
Kang, Q.; Yang, B.; Xu, Y.; Xu, B. W.; Hou, J. H. Printable MoOx anode interlayers for organic solar cells. Adv. Mater. 2018, 30, 1801718.
Kang, Q.; Liao, Q.; Xu, Y.; Xu, L.; Zu, Y. F.; Li, S. S.; Xu, B. W.; Hou, J. H. p-Doped conducting polyelectrolyte as an anode interlayer enables high efficiency for 1 cm2 printed organic solar cells. ACS Appl. Mater. Interfaces 2019, 11, 20205–20213.
Kang, Q.; Ye, L.; Xu, B. W.; An, C. B.; Stuard, S. J.; Zhang, S. Q.; Yao, H. F.; Ade, H.; Hou, J. H. A printable organic cathode interlayer enables over 13% efficiency for 1-cm2 organic solar cells. Joule 2019, 3, 227–239.
Bai, Y. M.; Zhao, C. Y.; Zhang, S.; Zhang, S. Q.; Yu, R. N.; Hou, J. H.; Tan, Z. A.; Li, Y. F. Printable SnO2 cathode interlayer with up to 500 nm thickness-tolerance for high-performance and large-area organic solar cells. Sci. China Chem. 2020, 63, 957–965.
Yang, Y.; Kang, Q.; Liao, Q.; Zheng, Z.; He, C.; Xu, B. W.; Hou, J. H. Inorganic molecular clusters with facile preparation and neutral pH for efficient hole extraction in organic solar cells. ACS Appl. Mater. Interfaces 2020, 12, 39462–39470.
Shafiey Dehaj, M.; Ahmadi, M.; Ghazanfarpour, S. Inverted bulk heterojunction organic solar cells using optimization of active layer deposition via controlling of doctor blade parameters. Surf. Interfaces 2020, 21, 100694.
Guo, X. T.; Li, H. Y.; Han, Y. F.; Yang, Y.; Luo, Q.; Ma, C. Q.; Yang, J. L. Fully doctor-bladed efficient organic solar cells processed under ambient condition. Org. Electron. 2020, 82, 105725.
Pérez-Gutiérrez, E.; Lozano, J.; Gaspar-Tánori, J.; Maldonado, J. L.; Gómez, B.; López, L.; Amores-Tapia, L. F.; Barbosa-García, O.; Percino, M. J. Organic solar cells all made by blade and slot-die coating techniques. Solar Energy 2017, 146, 79–84.
Koppitz, M.; Wegner, E.; Rödlmeier, T.; Colsmann, A. Hot-pressed hybrid electrodes comprising silver nanowires and conductive polymers for mechanically robust, all-doctor-bladed semitransparent organic solar cells. Energy Technol. 2018, 6, 1275–1282.
Byun, W. B.; Lee, S. K.; Lee, J. C.; Moon, S. J.; Shin, W. S. Bladed organic photovoltaic cells. Curr. Appl. Phys. 2011, 11, S179–S184.
Chang, J. H.; Chen, Y. H.; Lin, H. W.; Lin, Y. T.; Meng, H. F.; Chen, E. C. Highly efficient inverted rapid-drying blade-coated organic solar cells. Org. Electron. 2012, 13, 705–709.
Lim, S. L.; Chen, E. C.; Chen, C. Y.; Ong, K. H.; Chen, Z. K.; Meng, H. F. High performance organic photovoltaic cells with blade-coated active layers. Sol. Energy Mater. Sol. Cells 2012, 107, 292–297.
Xiong, K.; Hou, L. T.; Wu, M. X.; Huo, Y. C.; Mo, W. S.; Yuan, Y. F.; Sun, S.; Xu, W.; Wang, E. G. From spin coating to doctor blading: A systematic study on the photovoltaic performance of an isoindigo-based polymer. Sol. Energy Mater. Sol. Cells 2015, 132, 252–259.
Lee, Y. H.; Tsai, P. T.; Chang, C. J.; Meng, H. F.; Horng, S. F.; Zan, H. W.; Lin, H. C.; Liu, H. C.; Tseng, M. R.; Yeh, H. C. Blade-coated sol-gel indium-gallium-zinc-oxide for inverted polymer solar cell. AIP Adv. 2016, 6, 115006.
Zhao, K.; Hu, H.; Spada, E.; Jagadamma, L. K.; Yan, B.; Abdelsamie, M.; Yang, Y.; Yu, L.; Munir, R.; Li, R. et al. Highly efficient polymer solar cells with printed photoactive layer: Rational process transfer from spin-coating. J. Mater. Chem. A 2016, 4, 16036–16046.
Ro, H. W.; Downing, J. M.; Engmann, S.; Herzing, A. A.; DeLongchamp, D. M.; Richter, L. J.; Mukherjee, S.; Ade, H.; Abdelsamie, M.; Jagadamma, L. K. et al. Morphology changes upon scaling a high-efficiency, solution-processed solar cell. Energy Environ. Sci. 2016, 9, 2835–2846.
Hernandez, J. L.; Deb, N.; Wolfe, R. M. W.; Lo, C. K.; Engmann, S.; Richter, L. J.; Reynolds, J. R. Simple transfer from spin coating to blade coating through processing aggregated solutions. J. Mater. Chem. A 2017, 5, 20687–20695.
Jin, H.; Tao, C.; Velusamy, M.; Aljada, M.; Zhang, Y. L.; Hambsch, M.; Burn, P. L.; Meredith, P. Efficient, large area ITO-and-PEDOT-free organic solar cell sub-modules. Adv. Mater. 2012, 24, 2572–2577.
Lim, S. L.; Ong, K. H.; Li, J.; Yang, L.; Chang, Y. F.; Meng, H. F.; Wang, X. Z.; Chen, Z. K. Efficient, large area organic photovoltaic modules with active layers processed with non-halogenated solvents in air. Org. Electron. 2017, 43, 55–63.
Sun, R.; Guo, J.; Sun, C. K.; Wang, T.; Luo, Z. H.; Zhang, Z. H.; Jiao, X. C.; Tang, W. H.; Yang, C. L.; Li, Y. F. et al. A universal layer-by-layer solution-processing approach for efficient non-fullerene organic solar cells. Energy Environ. Sci. 2019, 12, 384–395.
Dong, S.; Jia, T.; Zhang, K.; Jing, J. H.; Huang, F. Single-component non-halogen solvent-processed high-performance organic solar cell module with efficiency over 14%. Joule 2020, 4, 2004–2016.
Liao, C. Y.; Chen, Y.; Lee, C. C.; Wang, G.; Teng, N. W.; Lee, C. H.; Li, W. L.; Chen, Y. K.; Li, C. H.; Ho, H. L. et al. Processing strategies for an organic photovoltaic module with over 10% efficiency. Joule 2020, 4, 189–206.
Chen, H. Y.; Zhang, R.; Chen, X. B.; Zeng, G.; Kobera, L.; Abbrent, S.; Zhang, B.; Chen, W. J.; Xu, G. Y.; Oh, J. et al. A guest-assisted molecular-organization approach for > 17% efficiency organic solar cells using environmentally friendly solvents. Nat. Energy 2021, 6, 1045–1053.