Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Currently, due to improvements in living standards, people are paying more attention to all-around disease prevention and health care. Self-powered implantable “tissue batteries” integrated with electrochemical materials are essential for disease prevention, diagnosis, treatment, postoperative therapy, and healthcare applications. We propose and define new concepts of “tissue batteries”—self-powered tissue batteries (SPTBs)—are flexible self-powered implantable systems or platforms based on electroactive biomaterials, acting at the interface of biological tissue. Based on the electrical phenomenon of living organisms in life activities, there has been an increased attention to SPTBs for tissue repair promotion. SPTBs take advantages of both the preeminent biocompatibility of biomaterials and the promotion of time-honored electrical stimulation therapy for tissue recovery, which are very promising for human illness treatment. However, studies on clinical applications of SPTBs are impeded by a lack of comprehensive cognitive assessment of SPTBs. Herein, SPTBs for life and health applications are comprehensively reviewed. First, electrochemical materials and their across-the-board applications for several types of SPTBs are introduced and compared with regard to disease prevention, diagnosis, precision therapy, and personalized health monitoring. Then, the potential mechanisms for SPTBs for tissue repair promotion are discussed. Finally, the prospective challenges are summarized and recommendations for future research are provided. This review elucidates on the significance and versatility of SPTBs for various medical applications.
Balint, R.; Cassidy, N. J.; Cartmell, S. H. Conductive polymers: Towards a smart biomaterial for tissue engineering. Acta Biomater. 2014, 10, 2341–2353.
Lakard, B.; Ploux, L.; Anselme, K.; Lallemand, F.; Lakard, S.; Nardin, M.; Hihn, J. Y. Effect of ultrasounds on the electrochemical synthesis of polypyrrole, application to the adhesion and growth of biological cells. Bioelectrochemistry 2009, 75, 148–157.
Ghasemi-Mobarakeh, L.; Prabhakaran, M. P.; Morshed, M.; Nasr-Esfahani, M. H.; Baharvand, H.; Kiani, S.; Al-Deyab, S. S.; Ramakrishna, S. Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering. J. Tissue Eng. Regen. Med. 2011, 5, e17–e35.
Liu, Z. G.; Wen, B.; Cao, L. Y.; Zhang, S. B.; Lei, Y. K.; Zhao, G. Z.; Chen, L.; Wang, J. Z.; Shi, Y.; Xu, J. et al. Photoelectric cardiac pacing by flexible and degradable amorphous Si radial junction stimulators. Adv. Healthcare Mater. 2020, 9, 1901342.
Olvera, D.; Monaghan, M. G. Electroactive material-based biosensors for detection and drug delivery. Adv. Drug Delivery Rev. 2021, 170, 396–424.
Tapeinos, C.; Gao, H.; Bauleth-Ramos, T.; Santos, H. A. Progress in stimuli-responsive biomaterials for treating cardiovascular and cerebrovascular diseases. Small 2022, 18, 2200291.
Kloth, L. C. Electrical stimulation technologies for wound healing. Adv. Wound Care 2014, 3, 81–90.
Gomes, R. C.; Guirro, E. C. O.; Gonçalves, A. C.; Farina Junior, J. A.; Murta Junior, L. O.; Guirro, R. R. J. High-voltage electric stimulation of the donor site of skin grafts accelerates the healing process. A randomized blinded clinical trial. Burns 2018, 44, 636–645.
Borgens, R. B.; Vanable, J. W., Jr.; Jaffe, L. F. Bioelectricity and regeneration: Large currents leave the stumps of regenerating newt limbs. Proc. Natl. Acad. Sci. USA. 1977, 74, 4528–4532.
Ud-Din, S.; Sebastian, A.; Giddings, P.; Colthurst, J.; Whiteside, S.; Morris, J.; Nuccitelli, R.; Pullar, C.; Baguneid, M.; Bayat, A. Angiogenesis is induced and wound size is reduced by electrical stimulation in an acute wound healing model in human skin. PLoS One 2015, 10, e0124502.
Becker, R. O. Stimulation of partial limb regeneration in rats. Nature 1972, 235, 109–111.
Djamgoz, M. B. A.; Mycielska, M.; Madeja, Z.; Fraser, S. P.; Korohoda, W. Directional movement of rat prostate cancer cells in direct-current electric field: Involvement of voltagegated Na+ channel activity. J. Cell Sci. 2001, 114, 2697–2705.
Cuzick, J.; Holland, R.; Barth, V.; Davies, R.; Faupel, M.; Fentiman, I.; Frischbier, H. J.; LaMarque, J. L.; Merson, M.; Sacchini, V. et al. Electropotential measurements as a new diagnostic modality for breast cancer. Lancet 1998, 352, 359–363.
McCaig, C. D.; Song, B.; Rajnicek, A. M. Electrical dimensions in cell science. J. Cell Sci. 2009, 122, 4267–4276.
Koo, J.; MacEwan, M. R.; Kang, S. K.; Won, S. M.; Stephen, M.; Gamble, P.; Xie, Z. Q.; Yan, Y.; Chen, Y. Y.; Shin, J. et al. Wireless bioresorbable electronic system enables sustained nonpharmacological neuroregenerative therapy. Nat. Med. 2018, 24, 1830–1836.
Hu, W. T.; Wei, X. L.; Zhu, L.; Yin, D.; Wei, A. M.; Bi, X. Y.; Liu, T.; Zhou, G. M.; Qiang, Y. H.; Sun, X. H. et al. Enhancing proliferation and migration of fibroblast cells by electric stimulation based on triboelectric nanogenerator. Nano Energy 2019, 57, 600–607.
Wu, M. Q.; Zhang, Z. Y.; Liu, Z. R.; Zhang, J. M.; Zhang, Y. L.; Ding, Y. M.; Huang, T.; Xiang, D. L.; Wang, Z.; Dai, Y. J. et al. Piezoelectric nanocomposites for sonodynamic bacterial elimination and wound healing. Nano Today 2021, 37, 101104.
Guk, K.; Han, G.; Lim, J.; Jeong, K.; Kang, T.; Lim, E. K.; Jung, J. Evolution of wearable devices with real-time disease monitoring for personalized healthcare. Nanomaterials 2019, 9, 813.
Long, Y.; Li, J.; Yang, F.; Wang, J. Y.; Wang, X. D. Wearable and implantable electroceuticals for therapeutic electrostimulations. Adv. Sci. 2021, 8, 2004023.
Luo, X. M.; Huo, Q. Q.; Liu, X. H.; Zheng, C.; Liu, Y. Effect of hydrophilic or hydrophobic interactions on the self-assembly behavior and micro-morphology of a collagen mimetic peptide. J. Leather Sci. Eng. 2021, 3, 11.
Chen, H. X.; Xue, L. Q.; Gong, G. D.; Pan, J. Z.; Wang, X. L.; Zhang, Y. Y.; Guo, J. L.; Qin, L. Collagen-based materials in reproductive medicine and engineered reproductive tissues. J. Leather Sci. Eng. 2022, 4, 3.
Zhu, B.; Fan, L. D.; Mushtaq, N.; Raza, R.; Sajid, M.; Wu, Y.; Lin, W. F.; Kim, J. S.; Lund, P. D.; Yun, S. N. Semiconductor electrochemistry for clean energy conversion and storage. Electrochem. Energy Rev. 2021, 4, 757–792.
Song, Y.; Kim, S.; Heller, M. J. An implantable transparent conductive film with water resistance and ultrabendability for electronic devices. ACS Appl. Mater. Interfaces 2017, 9, 42302–42312.
Wang, L. D.; Xu, D.; Gao, J.; Chen, X.; Duo, Y. H.; Zhang, H. Semiconducting quantum dots: Modification and applications in biomedical science. Sci. China Mater. 2020, 63, 1631–1650.
Choi, C.; Colón-Berríos, A. R.; Hamachi, L. S.; Owen, J. S.; Schwartz, T. H.; Ma, H. T.; Kymissis, I. Localizing seizure activity in the brain using implantable micro-LEDs with quantum dot downconversion. Adv. Mater. Technol. 2018, 3, 1700366.
Jiang, Y. W.; Tian, B. Z. Inorganic semiconductor biointerfaces. Nat. Rev. Mater. 2018, 3, 473–490.
Zhao, C. Z.; Cheung, K. M.; Huang, I. W.; Yang, H. Y.; Nakatsuka, N.; Liu, W. F.; Cao, Y.; Man, T. X.; Weiss, P. S.; Monbouquette, H. G. et al. Implantable aptamer-field-effect transistor neuroprobes for in vivo neurotransmitter monitoring. Sci. Adv. 2021, 7, eabj7422.
Sun, L. Y.; Li, S.; Yang, K. F.; Wang, J. C.; Li, Z. J.; Dan, N. H. Polycaprolactone strengthening keratin/bioactive glass composite scaffolds with double cross-linking networks for potential application in bone repair. J. Leather Sci. Eng. 2022, 4, 1.
Ang, Y. X.; Khudzari, A. Z. M.; Ali, M. S. M. Non-invasive treatment for coronary in-stent restenosis via wireless revascularization with nitinol active stent. IEEE Trans. Biomed. Eng. 2021, 68, 3681–3689.
Liu, P. B.; Yan, J.; Guang, Z. X.; Huang, Y.; Li, X. F.; Huang, W. H. Recent advancements of polyaniline-based nanocomposites for supercapacitors. J. Power Sources 2019, 424, 108–130.
Alshammary, B.; Walsh, F. C.; Herrasti, P.; de Leon, C. P. Electrodeposited conductive polymers for controlled drug release: Polypyrrole. J. Solid State Electrochem. 2016, 20, 839–859.
Wu, C. J.; Wang, J. P.; Bai, Y.; Li, X. F. Significant effect of cations on polypyrrole cycle stability. Solid State Ionics 2020, 346, 115216.
Zheng, M. H.; Wang, X. C.; Yue, O. Y.; Hou, M. D.; Zhang, H. J.; Beyer, S.; Blocki, A. M.; Wang, Q.; Gong, G. D.; Liu, X. H. et al. Skin-inspired gelatin-based flexible bio-electronic hydrogel for wound healing promotion and motion sensing. Biomaterials 2021, 276, 121026.
Dhall, A.; Islam, S.; Park, M.; Zhang, Y.; Kim, A.; Hwang, G. Bimodal nanocomposite platform with antibiofilm and self-powering functionalities for biomedical applications. ACS Appl. Mater. Interfaces 2021, 13, 40379–40391.
Liu, W. W.; Yang, D.; Wei, X. H.; Guo, S.; Wang, N.; Tang, Z.; Lu, Y. J.; Shen, S. N.; Shi, L.; Li, X. K. et al. Fabrication of piezoelectric porous BaTiO3 scaffold to repair large segmental bone defect in sheep. J. Biomater. Appl. 2020, 35, 544–552.
Li, J.; Long, Y.; Yang, F.; Wang, X. D. Degradable piezoelectric biomaterials for wearable and implantable bioelectronics. Curr. Opin. Solid State Mater. Sci. 2020, 24, 100806.
Badatya, S.; Bharti, D. K.; Srivastava, A. K.; Gupta, M. K. Solution processed high performance piezoelectric eggshell membrane-PVDF layer composite nanogenerator via tuning the interfacial polarization. J. Alloys Compd. 2021, 863, 158406.
Sun, R. J.; Carreira, S. C.; Chen, Y.; Xiang, C. Q.; Xu, L. L.; Zhang, B.; Chen, M. D.; Farrow, I.; Scarpa, F.; Rossiter, J. Stretchable piezoelectric sensing systems for self-powered and wireless health monitoring. Adv. Mater. Technol. 2019, 4, 1900100.
Morsada, Z.; Hossain, M. M.; Islam, M. T.; Mobin, M. A.; Saha, S. Recent progress in biodegradable and bioresorbable materials: From passive implants to active electronics. Appl. Mater. Today 2021, 25, 101257.
Chandrakasan, A. P.; Verma, N.; Daly, D. C. Ultralow-power electronics for biomedical applications. Annu. Rev. Biomed. Eng. 2008, 10, 247–274.
Song, Y.; Min, J. H.; Gao, W. Wearable and implantable electronics: Moving toward precision therapy. ACS Nano 2019, 13, 12280–12286.
Zhao, J. W.; Ghannam, R.; Htet, K. O.; Liu, Y. C.; Law, M. K.; Roy, V. A. L.; Michel, B.; Imran, M. A.; Heidari, H. Self-powered implantable medical devices: Photovoltaic energy harvesting review. Adv. Healthcare Mater. 2020, 9, 2000779.
Dagdeviren, C. The future of bionic dynamos. Science 2016, 354, 1109–1109.
Zhu, M. L.; Yi, Z. R.; Yang, B.; Lee, C. Making use of nanoenergy from human-nanogenerator and self-powered sensor enabled sustainable wireless IoT sensory systems. Nano Today 2021, 36, 101016.
Dong, L.; Jin, C. R.; Closson, A. B.; Trase, I.; Richards, H. C.; Chen, Z.; Zhang, J. X. J. Cardiac energy harvesting and sensing based on piezoelectric and triboelectric designs. Nano Energy 2020, 76, 105076.
Li, N.; Yi, Z. R.; Ma, Y.; Xie, F.; Huang, Y.; Tian, Y. W.; Dong, X. X.; Liu, Y.; Shao, X.; Li, Y. et al. Direct powering a real cardiac pacemaker by natural energy of a heartbeat. ACS Nano 2019, 13, 2822–2830.
Zheng, Q.; Shi, B. J.; Fan, F. R.; Wang, X. X.; Yan, L.; Yuan, W. W.; Wang, S. H.; Liu, H.; Li, Z.; Wang, Z. L. In vivo powering of pacemaker by breathing-driven implanted triboelectric nanogenerator. Adv. Mater. 2014, 26, 5851–5856.
Liu, Z.; Li, H.; Shi, B.; Fan, Y. B.; Wang, Z. L.; Li, Z. Wearable and implantable triboelectric nanogenerators. Adv. Funct. Mater. 2019, 29, 1808820.
Gu, L.; Liu, J. M.; Cui, N. Y.; Xu, Q.; Du, T.; Zhang, L.; Wang, Z.; Long, C. B.; Qin, Y. Enhancing the current density of a piezoelectric nanogenerator using a three-dimensional intercalation electrode. Nat. Commun. 2020, 11, 1030.
Xu, L. L.; Yang, Y.; Mao, Y. K.; Li, Z. Self-powerbility in electrical stimulation drug delivery system. Adv. Mater. Technol. 2022, 7, 2100055.
Xiao, X. X.; McGourty, K. D.; Magner, E. Enzymatic biofuel cells for self-powered, controlled drug release. J. Am. Chem. Soc. 2020, 142, 11602–11609.
Shi, B. J.; Li, Z.; Fan, Y. B. Implantable energy-harvesting devices. Adv. Mater. 2018, 30, 1801511.
Zou, L.; Qiao, Y.; Li, C. M. Boosting microbial electrocatalytic kinetics for high power density: Insights into synthetic biology and advanced nanoscience. Electrochem. Energy Rev. 2018, 1, 567–598.
Chen, P.; Wang, Q.; Wan, X.; Yang, M.; Liu, C. L.; Xu, C.; Hu, B.; Feng, J. X.; Luo, Z. Q. Wireless electrical stimulation of the vagus nerves by ultrasound-responsive programmable hydrogel nanogenerators for anti-inflammatory therapy in sepsis. Nano Energy 2021, 89, 106327.
Bansal, A.; Yang, F. Y.; Xi, T.; Zhang, Y.; Ho, J. S. In vivo wireless photonic photodynamic therapy. Proc. Natl. Acad. Sci. USA 2018, 115, 1469–1474.
Mukherjee, S.; Suleman, S.; Pilloton, R.; Narang, J.; Rani, K. State of the art in smart portable, wearable, ingestible and implantable devices for health status monitoring and disease management. Sensors 2022, 22, 4228.
Cheng, M.; Zhu, G. T.; Zhang, F.; Tang, W. L.; Jianping, S.; Yang, J. Q.; Zhu, L. Y. A review of flexible force sensors for human health monitoring. J. Adv. Res. 2020, 26, 53–68.
Wang, W. L.; Pang, J. B.; Su, J.; Li, F. J.; Li, Q.; Wang, X. X.; Wang, J. G.; Ibarlucea, B.; Liu, X. Y.; Li, Y. F. et al. Applications of nanogenerators for biomedical engineering and healthcare systems. InfoMat 2022, 4, e12262.
Ryu, H.; Park, H. M.; Kim, M. K.; Kim, B.; Myoung, H. S.; Kim, T. Y.; Yoon, H. J.; Kwak, S. S.; Kim, J.; Hwang, T. H. et al. Self-rechargeable cardiac pacemaker system with triboelectric nanogenerators. Nat. Commun. 2021, 12, 4374.
Xie, F.; Qian, X. Q.; Li, N.; Cui, D. X.; Zhang, H.; Xu, Z. Y. An experimental study on a piezoelectric vibration energy harvester for self-powered cardiac pacemakers. Ann. Transl. Med. 2021, 9, 880.
Yao, G.; Kang, L.; Li, J.; Long, Y.; Wei, H.; Ferreira, C. A.; Jeffery, J. J.; Lin, Y.; Cai, W. B.; Wang, X. D. Effective weight control via an implanted self-powered vagus nerve stimulation device. Nat. Commun. 2018, 9, 5349.
Lee, S.; Wang, H.; Xian Peh, W. Y.; He, T.; Yen, S. C.; Thakor, N. V.; Lee, C. Mechano-neuromodulation of autonomic pelvic nerve for underactive bladder: A triboelectric neurostimulator integrated with flexible neural clip interface. Nano Energy 2019, 60, 449–456.
Ma, Y. Q.; Bao, J.; Zhang, Y. W.; Li, Z. J.; Zhou, X. Y.; Wan, C. L.; Huang, L.; Zhao, Y.; Han, G.; Xue, T. Mammalian near-infrared image vision through injectable and self-powered retinal nanoantennae. Cell 2019, 177, 243–255. e15.
Zhao, C. C.; Cui, X.; Wu, Y. X.; Li, Z. Recent progress of nanogenerators acting as self-powered drug delivery devices. Adv. Sustainable Syst. 2021, 5, 2000268.
Xu, J.; Wang, Y. H.; Wei, Z. N.; Wang, F. T.; Huang, K. J. Significantly improving the performance of self-powered biosensor by effectively combining with high-energy enzyme biofuel cells, N-doped graphene, and ultrathin hollow carbon shell. Sens. Actuators B:Chem. 2021, 327, 128933.
Jang, J.; Lee, J.; Jang, J. H.; Choi, H. A triboelectric-based artificial basilar membrane to mimic cochlear tonotopy. Adv. Healthcare Mater. 2016, 5, 2481–2487.
Chen, X. Y.; Jiang, T.; Yao, Y. Y.; Xu, L.; Zhao, Z. F.; Wang, Z. L. Stimulating acrylic elastomers by a triboelectric nanogenerator-toward self-powered electronic skin and artificial muscle. Adv. Funct. Mater. 2016, 26, 4906–4913.
Yoon, H. J.; Kim, S. W. Nanogenerators to power implantable medical systems. Joule 2020, 4, 1398–1407.
Kim, D. H.; Shin, H. J.; Lee, H.; Jeong, C. K.; Park, H.; Hwang, G. T.; Lee, H. Y.; Joe, D. J.; Han, J. H.; Lee, S. H. et al. In vivo self-powered wireless transmission using biocompatible flexible energy harvesters. Adv. Funct. Mater. 2017, 27, 1700341.
Li, J.; Hacker, T. A.; Wei, H.; Long, Y.; Yang, F.; Ni, D. L.; Rodgers, A.; Cai, W. B.; Wang, X. D. Long-term in vivo operation of implanted cardiac nanogenerators in swine. Nano Energy 2021, 90, 106507.
Zhao, D. N.; Zhuo, J. T.; Chen, Z. T.; Wu, J. J.; Ma, R.; Zhang, X. J.; Zhang, Y. F.; Wang, X.; Wei, X. S.; Liu, L. X. et al. Eco-friendly in-situ gap generation of no-spacer triboelectric nanogenerator for monitoring cardiovascular activities. Nano Energy 2021, 90, 106580.
Ma, Y.; Zheng, Q.; Liu, Y.; Shi, B. J.; Xue, X.; Ji, W. P.; Liu, Z.; Jin, Y. M.; Zou, Y.; An, Z. et al. Self-powered, one-stop, and multifunctional implantable triboelectric active sensor for real-time biomedical monitoring. Nano Lett. 2016, 16, 6042–6051.
Zheng, Q.; Zhang, H.; Shi, B. J.; Xue, X.; Liu, Z.; Jin, Y. M.; Ma, Y.; Zou, Y.; Wang, X. X.; An, Z. et al. In vivo self-powered wireless cardiac monitoring via implantable triboelectric nanogenerator. ACS Nano 2016, 10, 6510–6518.
Li, R. F.; Qi, H.; Ma, Y.; Deng, Y. P.; Liu, S. N.; Jie, Y. S.; Jing, J. Z.; He, J. L.; Zhang, X.; Wheatley, L. et al. A flexible and physically transient electrochemical sensor for real-time wireless nitric oxide monitoring. Nat. Commun. 2020, 11, 3207.
Dyson, A.; Stidwill, R.; Taylor, V.; Singer, M. The impact of inspired oxygen concentration on tissue oxygenation during progressive haemorrhage. Intensive Care Med. 2009, 35, 1783–1791.
Zhang, H.; Gutruf, P.; Meacham, K.; Montana, M. C.; Zhao, X. Y.; Chiarelli, A. M.; Vázquez-Guardado, A.; Norris, A.; Lu, L.; Guo, Q. L. et al. Wireless, battery-free optoelectronic systems as subdermal implants for local tissue oximetry. Sci. Adv. 2019, 5, eaaw0873.
Alberti, K. G. M. M.; Zimmet, P. Z. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1:Diagnosis and classification of diabetes mellitus. Provisional report of a WHO consultation. Diabet. Med. 1998, 15, 539–553.
Teymourian, H.; Barfidokht, A.; Wang, J. Electrochemical glucose sensors in diabetes management: An updated review (2010–2020). Chem. Soc. Rev. 2020, 49, 7671–7709.
Gebremichael, G. B.; Mariye Zemicheal, T. Hypoglycemia prevention practice and associated factors among diabetic patients on follow-up at public hospitals of central zone, tigray, ethiopia, 2018. Int. J. Endocrinol. 2020, 2020, 8743531.
Zhang, W.; Zhang, L. L.; Gao, H. L.; Yang, W. Y.; Wang, S.; Xing, L. L.; Xue, X. Y. Self-powered implantable skin-like glucometer for real-time detection of blood glucose level in vivo. Nano-Micro Lett. 2018, 10, 32.
Cheng, X. L.; Xue, X.; Ma, Y.; Han, M. D.; Zhang, W.; Xu, Z. Y.; Zhang, H.; Zhang, H. X. Implantable and self-powered blood pressure monitoring based on a piezoelectric thinfilm: Simulated, in vitro and in vivo studies. Nano Energy 2016, 22, 453–460.
Ouyang, H.; Liu, Z.; Li, N.; Shi, B. J.; Zou, Y.; Xie, F.; Ma, Y.; Li, Z.; Li, H.; Zheng, Q. et al. Symbiotic cardiac pacemaker. Nat. Commun. 2019, 10, 1821.
Waldo, A. L.; Wells, J. L. Jr.; Cooper, T. B.; MacLean, W. A. H. Temporary cardiac pacing: Applications and techniques in the treatment of cardiac arrhythmias. Prog. Cardiovasc. Dis. 1981, 23, 451–474.
Dong, L.; Closson, A. B.; Jin, C. R.; Nie, Y.; Cabe, A.; Escobedo, D.; Huang, S. C.; Trase, I.; Xu, Z.; Chen, Z. et al. Multifunctional pacemaker lead for cardiac energy harvesting and pressure sensing. Adv. Healthcare Mater. 2020, 9, 2000053.
Hwang, G. T.; Park, H.; Lee, J. H.; Oh, S.; Park, K. I.; Byun, M.; Park, H.; Ahn, G.; Jeong, C. K.; No, K. et al. Self-powered cardiac pacemaker enabled by flexible single crystalline PMN-PT piezoelectric energy harvester. Adv. Mater. 2014, 26, 4880–4887.
Azimi, S.; Golabchi, A.; Nekookar, A.; Rabbani, S.; Amiri, M. H.; Asadi, K.; Abolhasani, M. M. Self-powered cardiac pacemaker by piezoelectric polymer nanogenerator implant. Nano Energy 2021, 83, 105781.
Yi, Z. R.; Xie, F.; Tian, Y. W.; Li, N.; Dong, X. X.; Ma, Y.; Huang, Y.; Hu, Y. L.; Xu, X. B.; Qu, D. et al. A battery-and leadless heart-worn pacemaker strategy. Adv. Funct. Mater. 2020, 30, 2000477.
Zurbuchen, A.; Haeberlin, A.; Bereuter, L.; Wagner, J.; Pfenniger, A.; Omari, S.; Schaerer, J.; Jutzi, F.; Huber, C.; Fuhrer, J. et al. The Swiss approach for a heartbeat-driven lead- and batteryless pacemaker. Heart Rhythm 2017, 14, 294–299.
Tashiro, R.; Kabei, N.; Katayama, K.; Tsuboi, E.; Tsuchiya, K. Development of an electrostatic generator for a cardiac pacemaker that harnesses the ventricular wall motion. J. Artif. Organs 2002, 5, 239–245.
Franzina, N.; Zurbuchen, A.; Zumbrunnen, A.; Niederhauser, T.; Reichlin, T.; Burger, J.; Haeberlin, A. A miniaturized endocardial electromagnetic energy harvester for leadless cardiac pacemakers. PLoS One 2020, 15, e0239667.
Choi, Y. S.; Yin, R. T.; Pfenniger, A.; Koo, J.; Avila, R.; Benjamin Lee, K.; Chen, S. W.; Lee, G.; Li, G.; Qiao, Y. et al. Fully implantable and bioresorbable cardiac pacemakers without leads or batteries. Nat. Biotechnol. 2021, 39, 1228–1238.
Jiang, W.; Li, H.; Liu, Z.; Li, Z.; Tian, J. J.; Shi, B. J.; Zou, Y.; Ouyang, H.; Zhao, C. C.; Zhao, L. M. et al. Fully bioabsorbable natural-materials-based triboelectric nanogenerators. Adv. Mater. 2018, 30, 1801895.
Walsh, P.; Kodoth, V.; McEneaney, D.; Rodrigues, P.; Velasquez, J.; Waterman, N.; Escalona, O. Towards low energy atrial defibrillation. Sensors 2015, 15, 22378–22400.
Boutry, C. M.; Beker, L.; Kaizawa, Y.; Vassos, C.; Tran, H.; Hinckley, A. C.; Pfattner, R.; Niu, S. M.; Li, J. H.; Claverie, J. et al. Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow. Nat. Biomed. Eng. 2019, 3, 47–57.
Won, S. M.; Song, E. M.; Reeder, J. T.; Rogers, J. A. Emerging modalities and implantable technologies for neuromodulation. Cell 2020, 181, 115–135.
Iaccarino, H. F.; Singer, A. C.; Martorell, A. J.; Rudenko, A.; Gao, F.; Gillingham, T. Z.; Mathys, H.; Seo, J.; Kritskiy, O.; Abdurrob, F. et al. Gamma frequency entrainment attenuates amyloid load and modifies microglia. Nature 2016, 540, 230–235.
Park, S. I.; Brenner, D. S.; Shin, G.; Morgan, C. D.; Copits, B. A.; Chung, H. U.; Pullen, M. Y.; Noh, K. N.; Davidson, S.; Oh, S. J. et al. Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics. Nat. Biotechnol. 2015, 33, 1280–1286.
Kameo, Y.; Miya, Y.; Hayashi, M.; Nakashima, T.; Adachi, T. In silico experiments of bone remodeling explore metabolic diseases and their drug treatment. Sci. Adv. 2020, 6, eaax0938.
Yu, X. Y.; Zhang, H. P.; Miao, Y. L.; Xiong, S. B.; Hu, Y. Recent strategies of collagen-based biomaterials for cartilage repair: From structure cognition to function endowment. J. Leather Sci. Eng. 2022, 4, 11.
Tian, J. J.; Shi, R.; Liu, Z.; Ouyang, H.; Yu, M.; Zhao, C. C.; Zou, Y.; Jiang, D. J.; Zhang, J. S.; Li, Z. Self-powered implantable electrical stimulator for osteoblasts’ proliferation and differentiation. Nano Energy 2019, 59, 705–714.
Tang, W.; Tian, J. J.; Zheng, Q.; Yan, L.; Wang, J. X.; Li, Z.; Wang, Z. L. Implantable self-powered low-level laser cure system for mouse embryonic osteoblasts’ proliferation and differentiation. ACS Nano 2015, 9, 7867–7873.
Karipott, S. S.; Nelson, B. D.; Guldberg, R. E.; Ong, K. G. Clinical potential of implantable wireless sensors for orthopedic treatments. Expert Rev. Med. Devices 2018, 15, 255–264.
Yao, G.; Kang, L.; Li, C. C.; Chen, S. H.; Wang, Q.; Yang, J. Z.; Long, Y.; Li, J.; Zhao, K. N.; Xu, W. N. et al. A self-powered implantable and bioresorbable electrostimulation device for biofeedback bone fracture healing. Proc. Natl. Acad. Sci. USA 2021, 118, e2100772118.
Yu, B.; Qiao, Z. G.; Cui, J. J.; Lian, M. F.; Han, Y.; Zhang, X.; Wang, W. Q.; Yu, X. G.; Yu, H.; Wang, X. D. et al. A host-coupling bio-nanogenerator for electrically stimulated osteogenesis. Biomaterials 2021, 276, 120997.
Qin, L.; Cao, J.; Shao, K.; Tong, F.; Yang, Z. H.; Lei, T.; Wang, Y. Z.; Hu, C.; Umeshappa, C. S.; Gao, H. L. et al. A tumor-to-lymph procedure navigated versatile gel system for combinatorial therapy against tumor recurrence and metastasis. Sci. Adv. 2020, 6, eabb3116.
Chen, M. H.; Zhou, Y. K.; Lang, J. Y.; Li, L. J.; Zhang, Y. Triboelectric nanogenerator and artificial intelligence to promote precision medicine for cancer. Nano Energy 2022, 92, 106783.
Zhang, X. G.; Tang, J. J.; Li, C.; Lu, Y.; Cheng, L. L.; Liu, J. A targeting black phosphorus nanoparticle based immune cells nano-regulator for photodynamic/photothermal and photo-immunotherapy. Bioact. Mater. 2021, 6, 472–489.
Shao, J. D.; Xie, H. H.; Huang, H.; Li, Z. B.; Sun, Z. B.; Xu, Y. H.; Xiao, Q. L.; Yu, X. F.; Zhao, Y. T.; Zhang, H. et al. Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. Nat. Commun. 2016, 7, 12967.
Dolmans, D. E. J. G. J.; Fukumura, D.; Jain, R. K. Photodynamic therapy for cancer. Nat. Rev. Cancer 2003, 3, 380–387.
Park, J.; Lee, Y. K.; Park, I. K.; Hwang, S. R. Current limitations and recent progress in nanomedicine for clinically available photodynamic therapy. Biomedicines 2021, 9, 85.
Lee, G. H.; Moon, H.; Kim, H.; Lee, G. H.; Kwon, W.; Yoo, S.; Myung, D.; Yun, S. H.; Bao, Z. N.; Hahn, S. K. Multifunctional materials for implantable and wearable photonic healthcare devices. Nat. Rev. Mater. 2020, 5, 149–165.
Deisseroth, K. Optogenetics. Nat. Methods 2011, 8, 26–29.
Gheorghiu, M.; Polonschii, C.; Popescu, O.; Gheorghiu, E. Advanced optogenetic-based biosensing and related biomaterials. Materials 2021, 14, 4151.
Younis, M. R.; Wang, C.; An, R. B.; Wang, S. J.; Younis, M. A.; Li, Z. Q.; Wang, Y.; Ihsan, A.; Ye, D. J.; Xia, X. H. Low power single laser activated synergistic cancer phototherapy using photosensitizer functionalized dual plasmonic photothermal nanoagents. ACS Nano 2019, 13, 2544–2557.
Liu, Z.; Xu, L. L.; Zheng, Q.; Kang, Y.; Shi, B. J.; Jiang, D. J.; Li, H.; Qu, X. C.; Fan, Y. B.; Wang, Z. L. et al. Human motion driven self-powered photodynamic system for long-term autonomous cancer therapy. ACS Nano 2020, 14, 8074–8083.
Chin, A. L.; Jiang, S.; Jang, E.; Niu, L. Q.; Li, L. W.; Jia, X. T.; Tong, R. Implantable optical fibers for immunotherapeutics delivery and tumor impedance measurement. Nat. Commun. 2021, 12, 5138.
He, C.; Dong, C. H.; Yu, L. D.; Chen, Y.; Hao, Y. Q. Ultrathin 2D inorganic ancient pigment decorated 3D-printing scaffold enables photonic hyperthermia of osteosarcoma in NIR-II biowindow and concurrently augments bone regeneration. Adv. Sci. 2021, 8, 2101739.
Lee, S. H.; Wan, Q. Q.; Wentworth, A.; Ballinger, I.; Ishida, K.; Collins, J. E.; Tamang, S.; Huang, H. W.; Li, C. C.; Hess, K. et al. Implantable system for chronotherapy. Sci. Adv. 2021, 7, eabj4624.
Choi, G.; Fitriasari, E. I.; Park, C. Electro-mechanochemical gating of a metal-phenolic nanocage for controlled guest-release self-powered patches and injectable gels. ACS Nano 2021, 15, 14580–14586.
Li, J. Y.; Mooney, D. J. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 2016, 1, 16071.
Brudno, Y.; Mooney, D. J. On-demand drug delivery from local depots. J. Control. Release 2015, 219, 8–17.
Song, P. Y.; Kuang, S. Y.; Panwar, N.; Yang, G.; Tng, D. J. H.; Tjin, S. C.; Ng, W. J.; Majid, M. B. A.; Zhu, G.; Yong, K. T. et al. A self-powered implantable drug-delivery system using biokinetic energy. Adv. Mater. 2017, 29, 1605668.
Gabrielsson, E. O.; Jung, Y. H.; Han, J. H.; Joe, D. J.; Simon, D. T.; Lee, K. J.; Berggren, M. Autonomous microcapillary drug delivery system self-powered by a flexible energy harvester. Adv. Mater. Technol. 2021, 6, 2100526.
Zhao, C. C.; Feng, H. Q.; Zhang, L. J.; Li, Z.; Zou, Y.; Tan, P. C.; Ouyang, H.; Jiang, D. J.; Yu, M.; Wang, C. et al. Highly efficient in vivo cancer therapy by an implantable magnet triboelectric nanogenerator. Adv. Funct. Mater. 2019, 29, 1808640.
Choi, M.; Choi, J. W.; Kim, S.; Nizamoglu, S.; Hahn, S. K.; Yun, S. H. Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo. Nat. Photonics 2013, 7, 987–994.
Ma, Y. J.; Zhang, Y. C.; Cai, S. S.; Han, Z. Y.; Liu, X.; Wang, F. L.; Cao, Y.; Wang, Z. H.; Li, H. F.; Chen, Y. H. et al. Flexible hybrid electronics for digital healthcare. Adv. Mater. 2020, 32, 1902062.
Tian, L. M.; Zimmerman, B.; Akhtar, A.; Yu, K. J.; Moore, M.; Wu, J.; Larsen, R. J.; Lee, J. W.; Li, J. H.; Liu, Y. H. et al. Large-area MRI-compatible epidermal electronic interfaces for prosthetic control and cognitive monitoring. Nat. Biomed. Eng. 2019, 3, 194–205.
Yu, Y.; Nyein, H. Y. Y.; Gao, W.; Javey, A. Flexible electrochemical bioelectronics: The rise of in situ bioanalysis. Adv. Mater. 2020, 32, 1902083.
Zhang, L.; Kumar, K. S.; He, H.; Cai, C. J.; He, X.; Gao, H. X.; Yue, S. Z.; Li, C. S.; Seet, R. C. S.; Ren, H. L. et al. Fully organic compliant dry electrodes self-adhesive to skin for long-term motion-robust epidermal biopotential monitoring. Nat. Commun. 2020, 11, 4683.
Sun, J. Y.; Yang, A. P.; Zhao, C. C.; Liu, F.; Li, Z. Recent progress of nanogenerators acting as biomedical sensors in vivo. Sci. Bull. 2019, 64, 1336–1347.
Heikenfeld, J.; Jajack, A.; Feldman, B.; Granger, S. W.; Gaitonde, S.; Begtrup, G.; Katchman, B. A. Accessing analytes in biofluids for peripheral biochemical monitoring. Nat. Biotechnol. 2019, 37, 407–419.
Wang, J. Glucose biosensors: 40 years of advances and challenges. Electroanalysis 2001, 13, 983–988.
Lee, H.; Hong, Y. J.; Baik, S.; Hyeon, T.; Kim, D. H. Enzyme-based glucose sensor: From invasive to wearable device. Adv. Healthcare Mater. 2018, 7, 1701150.
Hwang, D. W.; Lee, S.; Seo, M.; Chung, T. D. Recent advances in electrochemical non-enzymatic glucose sensors—A review. Anal. Chim. Acta 2018, 1033, 1–34.
Gough, D. A.; Kumosa, L. S.; Routh, T. L.; Lin, J. T.; Lucisano, J. Y. Function of an implanted tissue glucose sensor for more than 1 year in animals. Sci. Transl. Med. 2010, 2, 42ra53.
Signore, M. A.; Rescio, G.; De Pascali, C.; Iacovacci, V.; Dario, P.; Leone, A.; Quaranta, F.; Taurino, A.; Siciliano, P.; Francioso, L. Fabrication and characterization of AlN-based flexible piezoelectric pressure sensor integrated into an implantable artificial pancreas. Sci. Rep. 2019, 9, 17130.
Kral, A. Auditory critical periods: A review from system’s perspective. Neuroscience 2013, 247, 117–133.
Cohen, N. The totally implantable cochlear implant. Ear Hear. 2007, 28, 100S–101S.
Park, S.; Guan, X. Y.; Kim, Y.; Creighton, F. X.; Wei, E.; Kymissis, I.; Nakajima, H. H.; Olson, E. S. PVDF-based piezoelectric microphone for sound detection inside the cochlea: Toward totally implantable cochlear implants. Trends Hear. 2018, 22, 2331216518774450.
Mitchell-Innes, A.; Saeed, S. R.; Irving, R. The future of cochlear implant design. Adv. Otorhinolaryngol. 2018, 81, 105–113.
Latif, R.; Noor, M. M.; Yunas, J.; Hamzah, A. A. Mechanical energy sensing and harvesting in micromachined polymer-based piezoelectric transducers for fully implanted hearing systems: A review. Polymers 2021, 13, 2276.
Liu, Y. D.; Zhu, Y. X.; Liu, J. Y.; Zhang, Y.; Liu, J.; Zhai, J. Y. Design of bionic cochlear basilar membrane acoustic sensor for frequency selectivity based on film triboelectric nanogenerator. Nanoscale Res. Lett. 2018, 13, 191.
Kim, S. H.; Yu, C.; Ishiyama, K. Rotary-type electromagnetic power generator using a cardiovascular system as a power source for medical implants. IEEE/ASME Trans. Mech. 2016, 21, 122–129.
Tyler, S. E. B. Nature’s electric potential: A systematic review of the role of bioelectricity in wound healing and regenerative processes in animals, humans, and plants. Front. Physiol. 2017, 8, 627.
Zhao, M.; Song, B.; Pu, J.; Wada, T.; Reid, B.; Tai, G. P.; Wang, F.; Guo, A. H.; Walczysko, P.; Gu, Y. et al. Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-γ and PTEN. Nature 2006, 442, 457–460.
Rajabi, A. H.; Jaffe, M.; Arinzeh, T. L. Piezoelectric materials for tissue regeneration: A review. Acta Biomater. 2015, 24, 12–23.
Ning, C. Y.; Zhou, Z. N.; Tan, G. X.; Zhu, Y.; Mao, C. B. Electroactive polymers for tissue regeneration: Developments and perspectives. Prog. Polym. Sci. 2018, 81, 144–162.
Zhang, X. H.; Zhang, C. G.; Lin, Y. H.; Hu, P. H.; Shen, Y.; Wang, K.; Meng, S.; Chai, Y.; Dai, X. H.; Liu, X. et al. Nanocomposite membranes enhance bone regeneration through restoring physiological electric microenvironment. ACS Nano 2016, 10, 7279–7286.
Municoy, S.; Echazu, M. I. Á.; Antezana, P. E.; Galdoporpora, J. M.; Olivetti, C.; Mebert, A. M.; Foglia, M. L.; Tuttolomondo, M. V.; Alvarez, G. S.; Hardy, J. G. et al. Stimuli-responsive materials for tissue engineering and drug delivery. Int. J. Mol. Sci. 2020, 21, 4724.
Qian, Y.; Song, J. L.; Zhao, X. T.; Chen, W.; Ouyang, Y. M.; Yuan, W. E.; Fan, C. Y. 3D fabrication with integration molding of a graphene oxide/polycaprolactone nanoscaffold for neurite regeneration and angiogenesis. Adv. Sci. 2018, 5, 1700499.
del Monte-Nieto, G.; Fischer, J. W.; Gorski, D. J.; Harvey, R. P.; Kovacic, J. C. Basic biology of extracellular matrix in the cardiovascular system, Part 1/4: JACC focus seminar. J. Am. Coll. Cardiol. 2020, 75, 2169–2188.
Huang, Y. J.; Schiapparelli, P.; Kozielski, K.; Green, J.; Lavell, E.; Guerrero-Cazares, H.; Quinones-Hinojosa, A.; Searson, P. Electrophoresis of cell membrane heparan sulfate regulates galvanotaxis in glial cells. J. Cell Sci. 2017, 130, 2459–2467.
Cameron, M. A.; Al Abed, A.; Buskila, Y.; Dokos, S.; Lovell, N. H.; Morley, J. W. Differential effect of brief electrical stimulation on voltage-gated potassium channels. J. Neurophysiol. 2017, 117, 2014–2024.
Naskar, S.; Kumaran, V.; Markandeya, Y. S.; Mehta, B.; Basu, B. Neurogenesis-on-chip: Electric field modulated transdifferentiation of human mesenchymal stem cell and mouse muscle precursor cell coculture. Biomaterials 2020, 226, 119522.
Cho, M. R. A review of electrocoupling mechanisms mediating facilitated wound healing. IEEE Trans. Plasma Sci. 2002, 30, 1504–1515.
Jing, W.; Zhang, Y. F.; Cai, Q.; Chen, G. Q.; Wang, L.; Yang, X. P.; Zhong, W. H. Study of electrical stimulation with different electric-field intensities in the regulation of the differentiation of PC12 cells. ACS Chem. Neurosci. 2019, 10, 348–357.
Abedin-Do, A.; Zhang, Z.; Douville, Y.; Méthot, M.; Rouabhia, M. Effect of electrical stimulation on diabetic human skin fibroblast growth and the secretion of cytokines and growth factors involved in wound healing. Biology 2021, 10, 641.
Sauer, H.; Bekhite, M. M.; Hescheler, J.; Wartenberg, M. Redox control of angiogenic factors and CD31-positive vessel-like structures in mouse embryonic stem cells after direct current electrical field stimulation. Exp. Cell Res. 2005, 304, 380–390.
Pei, Y. C.; Chen, T. Y.; Hsu, P. C.; Lin, C. H.; Huang, J. J. An electroneurography-based assay for identifying injured nerve segment during surgery: Design and in vivo application in the rat. J. Neural Eng. 2019, 16, 026027.
Garrido, J. J.; Fernandes, F.; Moussif, A.; Fache, M. P.; Giraud, P.; Dargent, B. Dynamic compartmentalization of the voltage-gated sodium channels in axons. Biol. Cell 2003, 95, 437–445.
Asensio-Pinilla, E.; Udina, E.; Jaramillo, J.; Navarro, X. Electrical stimulation combined with exercise increase axonal regeneration after peripheral nerve injury. Exp. Neurol. 2009, 219, 258–265.
Li, Y. C.; Weiss, M.; Yao, L. Directed migration of embryonic stem cell-derived neural cells in an applied electric field. Stem Cell Rev. Rep. 2014, 10, 653–662.
Zhou, Z. F.; Liu, X. F.; Wu, W.; Park, S.; Miller II, A. L.; Terzic, A.; Lu, L. C. Effective nerve cell modulation by electrical stimulation of carbon nanotube embedded conductive polymeric scaffolds. Biomater. Sci. 2018, 6, 2375–2385.
Yu, P.; Ning, C. Y.; Zhang, Y.; Tan, G. X.; Lin, Z. F.; Liu, S. X.; Wang, X. L.; Yang, H. Q.; Li, K.; Yi, X. et al. Bone-inspired spatially specific piezoelectricity induces bone regeneration. Theranostics 2017, 7, 3387–3397.
Chen, L. R.; Hou, P. H.; Chen, K. H. Nutritional support and physical modalities for people with osteoporosis: Current opinion. Nutrients 2019, 11, 2848.
Vila, M.; Cicuéndez, M.; Sánchez-Marcos, J.; Fal-Miyar, V.; Manzano, M.; Prieto, C.; Vallet-Regi, M. Electrical stimuli to increase cell proliferation on carbon nanotubes/mesoporous silica composites for drug delivery. J. Biomed. Mater. Res. Part A 2013, 101A, 213–221.
Wiesmann, H. P.; Hartig, M.; Stratmann, U.; Meyer, U.; Joos, U. Electrical stimulation influences mineral formation of osteoblast-like cells in vitro. Biochim. Biophys. Acta-Mol. Cell Res. 2001, 1538, 28–37.
Saberi, A.; Jabbari, F.; Zarrintaj, P.; Saeb, M. R.; Mozafari, M. Electrically conductive materials: Opportunities and challenges in tissue engineering. Biomolecules 2019, 9, 448.
Shi, G. X.; Zhang, Z.; Rouabhia, M. The regulation of cell functions electrically using biodegradable polypyrrole–polylactide conductors. Biomaterials 2008, 29, 3792–3798.
Sun, G. X.; Wang, L. J.; Xiang, C.; Qin, K. R. A dynamic model for intracellular calcium response in fibroblasts induced by electrical stimulation. Math. Biosci. 2013, 244, 47–57.
Wu, J.; Qin, N.; Bao, D. H. Effective enhancement of piezocatalytic activity of BaTiO3 nanowires under ultrasonic vibration. Nano Energy 2018, 45, 44–51.
Yu, X.; Wang, S.; Zhang, X. D.; Qi, A. H.; Qiao, X. R.; Liu, Z. R.; Wu, M. Q.; Li, L. L.; Wang, Z. L. Heterostructured nanorod array with piezophototronic and plasmonic effect for photodynamic bacteria killing and wound healing. Nano Energy 2018, 46, 29–38.
Bok, M.; Lee, Y.; Park, D.; Shin, S.; Zhao, Z. J.; Hwang, B.; Hwang, S. H.; Jeon, S. H.; Jung, J. Y.; Park, S. H. et al. Microneedles integrated with a triboelectric nanogenerator: An electrically active drug delivery system. Nanoscale 2018, 10, 13502–13510.
Reddy, S.; He, L. M.; Ramakrishana, S. Miniaturized-electroneurostimulators and self-powered/rechargeable implanted devices for electrical-stimulation therapy. Biomed. Signal Process. Control 2018, 41, 255–263.
Liu, Z. G.; Dong, L. Q.; Cheng, K.; Luo, Z. K.; Weng, W. J. Charge injection based electrical stimulation on polypyrrole planar electrodes to regulate cellular osteogenic differentiation. RSC Adv. 2018, 8, 18470–18479.
Gelmi, A.; Schutt, C. E. Stimuli-responsive biomaterials: Scaffolds for stem cell control. Adv. Healthcare Mater. 2021, 10, 2001125.
Blanquer, A.; Careta, O.; Anido-Varela, L.; Aranda, A.; Ibáñez, E.; Esteve, J.; Nogués, C.; Murillo, G. Biocompatibility and electrical stimulation of skeletal and smooth muscle cells cultured on piezoelectric nanogenerators. Int. J. Mol. Sci. 2021, 23, 432.
Murillo, G.; Blanquer, A.; Vargas-Estevez, C.; Barrios, L.; Ibáñez, E.; Nogués, C.; Esteve, J. Electromechanical nanogenerator–cell interaction modulates cell activity. Adv. Mater. 2017, 29, 1605048.
Xu, G. Y.; Huang, L. Y. M. Ca2+/calmodulin-dependent protein kinase II potentiates ATP responses by promoting trafficking of P2X receptors. Proc. Natl. Acad. Sci. USA 2004, 101, 11868–11873.
Gu, J. H.; He, X. Z.; Chen, X. Y.; Dong, L. Q.; Weng, W. J.; Cheng, K. Effects of electrical stimulation on cytokine-induced macrophage polarization. J. Tissue Eng. Regener. Med. 2022, 16, 448–459.
Larsson, O.; Kindmark, H.; Brandstrom, R.; Fredholm, B.; Berggren, P. O. Oscillations in K-ATP channel activity promote oscillations in cytoplasmic free Ca2+ concentration in the pancreatic beta cell. Proc. Natl. Acad. Sci. USA 1996, 93, 5161–5165.
Zhao, G. L.; Joca, H. C.; Nelson, M. T.; Lederer, W. J. ATP- and voltage-dependent electro-metabolic signaling regulates blood flow in heart. Proc. Natl. Acad. Sci. USA 2020, 117, 7461–7470.
Serena, E.; Figallo, E.; Tandon, N.; Cannizzaro, C.; Gerecht, S.; Elvassore, N.; Vunjak-Novakovic, G. Electrical stimulation of human embryonic stem cells: Cardiac differentiation and the generation of reactive oxygen species. Exp. Cell Res. 2009, 315, 3611–3619.
Lissoni, A.; Hulpiau, P.; Martins-Marques, T.; Wang, N.; Bultynck, G.; Schulz, R.; Witschas, K.; Girao, H.; De Smet, M.; Leybaert, L. RyR2 regulates Cx43 hemichannel intracellular Ca2+-dependent activation in cardiomyocytes. Cardiovasc. Res. 2021, 117, 123–136.
Kotwal, A.; Schmidt, C. E. Electrical stimulation alters protein adsorption and nerve cell interactions with electrically conducting biomaterials. Biomaterials 2001, 22, 1055–1064.
Meng, S. Y.; Rouabhia, M.; Zhang, Z. Electrical stimulation and cellular behaviors in electric field in biomedical research. Materials 2021, 15, 165.
Du, S.; Zhou, N. Y.; Gao, Y. J.; Xie, G.; Du, H. Y.; Jiang, H.; Zhang, L. B.; Tao, J.; Zhu, J. T. Bioinspired hybrid patches with self-adhesive hydrogel and piezoelectric nanogenerator for promoting skin wound healing. Nano Res. 2020, 13, 2525–2533.
Li, J.; Kang, L.; Yu, Y. H.; Long, Y.; Jeffery, J. J.; Cai, W. B.; Wang, X. D. Study of long-term biocompatibility and bio-safety of implantable nanogenerators. Nano Energy 2018, 51, 728–735.
Rijal, G.; Li, W. M. Native-mimicking in vitro microenvironment: An elusive and seductive future for tumor modeling and tissue engineering. J. Biol. Eng. 2018, 12, 20.
Liu, L.; Guo, X. G.; Lee, C. Promoting smart cities into the 5G era with multi-field Internet of Things (IoT) applications powered with advanced mechanical energy harvesters. Nano Energy 2021, 88, 106304.
Hwang, G. T.; Kim, Y.; Lee, J. H.; Oh, S.; Jeong, C. K.; Park, D. Y.; Ryu, J.; Kwon, H.; Lee, S. G.; Joung, B. et al. Self-powered deep brain stimulation via a flexible PIMNT energy harvester. Energy Environ. Sci. 2015, 8, 2677–2684.
Zhao, L. W.; Gao, Z. B.; Liu, W.; Wang, C. L.; Luo, D.; Chao, S. Y.; Li, S. W.; Li, Z.; Wang, C. Y.; Zhou, J. Promoting maturation and contractile function of neonatal rat cardiomyocytes by self-powered implantable triboelectric nanogenerator. Nano Energy 2022, 103, 107798.
Xu, J.; Cheng, C.; Li, X. R.; Lu, Y. L.; Hu, S.; Liu, G.; Zhu, L. H.; Wang, N.; Wang, L. C.; Cheng, P. et al. Implantable platinum nanotree microelectrode with a battery-free electrochemical patch for peritoneal carcinomatosis monitoring. Biosens. Bioelectron. 2021, 185, 113265.
Burton, A.; Obaid, S. N.; Vázquez-Guardado, A.; Schmit, M. B.; Stuart, T.; Cai, L.; Chen, Z. Y.; Kandela, I.; Haney, C. R.; Waters, E. A. et al. Wireless, battery-free subdermally implantable photometry systems for chronic recording of neural dynamics. Proc. Natl. Acad. Sci. USA 2020, 117, 2835–2845.
Curry, E. J.; Ke, K.; Chorsi, M. T.; Wrobel, K. S.; Miller III, A. N.; Patel, A.; Kim, I.; Feng, J. L.; Yue, L. X.; Wu, Q. et al. Biodegradable piezoelectric force sensor. Proc. Natl. Acad. Sci. USA 2018, 115, 909–914.
Udvardi, P.; Radó, J.; Straszner, A.; Ferencz, J.; Hajnal, Z.; Soleimani, S.; Schneider, M.; Schmid, U.; Révész, P.; Volk, J. Spiral-shaped piezoelectric MEMS cantilever array for fully implantable hearing systems. Micromachines 2017, 8, 311.