Journal Home > Volume 16 , Issue 1

The layer-dependent properties are still unclarified in two-dimensional (2D) vertical heterostructures. In this study, we layer-by-layer deposited semimetal β-In2Se3 on monolayer MoS2 to form vertical β-In2Se3/MoS2 heterostructures by chemical vapor deposition. The defect-mediated nucleation mechanism induces β-In2Se3 nanosheets to grow on monolayer MoS2, and the layer number of stacked β-In2Se3 can be precisely regulated from 1 layer (L) to 13 L by prolonging the growth time. The β-In2Se3/MoS2 heterostructures reveal tunable type-Ⅱ band alignment arrangement by altering the layer number of β-In2Se3, which optimizes the internal electron transfer. Meanwhile, the edge atomic structure of β-In2Se3 stacking on monolayer MoS2 shows the reconstruction derived from large lattice mismatch (~ 29%), and the presence of β-In2Se3 also further increases the electrical conductivity of β-In2Se3/MoS2 heterostructures. Attributed to abundant layer-dependent edge active sites, edge reconstruction, improved hydrophilicity, and high electrical conductivity of β-In2Se3/MoS2 heterostructures, the edge of β-In2Se3/MoS2 heterostructures exhibits excellent electrocatalytic hydrogen evolution performance. Lower onset potential and smaller Tafel slope can be observed at the edge of monolayer MoS2 coupled with 13-L β-In2Se3. Hence, the outstanding conductive layers coupled with edge reconstruction in 2D vertical heterostructures play decisive roles in the optimization of electron energy levels and improvement of layer-dependent catalytic performance.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Edge reconstruction of layer-dependent β-In2Se3/MoS2 vertical heterostructures for accelerated hydrogen evolution

Show Author's information Gonglei Shao1,2,§Meiqing Yang3,§Haiyan Xiang2Song Luo2Xiong-Xiong Xue4Huimin Li2Xu Zhang1Song Liu2( )Zhen Zhou1,5( )
Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
College of Life and Environmental Science, Hunan University of Arts and Science, Changde 415000, China
School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China
Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China

§ Gonglei Shao and Meiqing Yang contributed equally to this work.

Abstract

The layer-dependent properties are still unclarified in two-dimensional (2D) vertical heterostructures. In this study, we layer-by-layer deposited semimetal β-In2Se3 on monolayer MoS2 to form vertical β-In2Se3/MoS2 heterostructures by chemical vapor deposition. The defect-mediated nucleation mechanism induces β-In2Se3 nanosheets to grow on monolayer MoS2, and the layer number of stacked β-In2Se3 can be precisely regulated from 1 layer (L) to 13 L by prolonging the growth time. The β-In2Se3/MoS2 heterostructures reveal tunable type-Ⅱ band alignment arrangement by altering the layer number of β-In2Se3, which optimizes the internal electron transfer. Meanwhile, the edge atomic structure of β-In2Se3 stacking on monolayer MoS2 shows the reconstruction derived from large lattice mismatch (~ 29%), and the presence of β-In2Se3 also further increases the electrical conductivity of β-In2Se3/MoS2 heterostructures. Attributed to abundant layer-dependent edge active sites, edge reconstruction, improved hydrophilicity, and high electrical conductivity of β-In2Se3/MoS2 heterostructures, the edge of β-In2Se3/MoS2 heterostructures exhibits excellent electrocatalytic hydrogen evolution performance. Lower onset potential and smaller Tafel slope can be observed at the edge of monolayer MoS2 coupled with 13-L β-In2Se3. Hence, the outstanding conductive layers coupled with edge reconstruction in 2D vertical heterostructures play decisive roles in the optimization of electron energy levels and improvement of layer-dependent catalytic performance.

Keywords: hydrogen evolution reaction, edge reconstruction, microreactor, layer dependent, In2Se3/MoS2 heterostructure

References(48)

[1]

Song, Q. J.; Tan, Q. H.; Zhang, X.; Wu, J. B.; Sheng, B. W.; Wan, Y.; Wang, X. Q.; Dai, L.; Tan, P. H. Physical origin of Davydov splitting and resonant Raman spectroscopy of Davydov components in multilayer MoTe2. Phys. Rev. B 2016, 93, 115409.

[2]

Wang, X. M.; Jones, A. M.; Seyler, K. L.; Tran, V.; Jia, Y. C.; Zhao, H.; Wang, H.; Yang, L.; Xu, X. D.; Xia, F. N. Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol. 2015, 10, 517–521.

[3]

Boland, J. B.; Tian, R. Y.; Harvey, A.; Vega-Mayoral, V.; Griffin, A.; Horvath, D. V.; Gabbett, C.; Breshears, M.; Pepper, J.; Li, Y. G. et al. Liquid phase exfoliation of GeS nanosheets in ambient conditions for lithium ion battery applications. 2D Mater. 2020, 7, 035015.

[4]

Meng, L. J.; Zhou, Z.; Xu, M. Q.; Yang, S. Q.; Si, K. P.; Liu, L. X.; Wang, X. G.; Jiang, H. N.; Li, B. X.; Qin, P. X. et al. Anomalous thickness dependence of Curie temperature in air-stable two-dimensional ferromagnetic 1T-CrTe2 grown by chemical vapor deposition. Nat. Commun. 2021, 12, 809.

[5]

Zhao, B.; Dang, W. Q.; Liu, Y.; Li, B.; Li, J.; Luo, J.; Zhang, Z. W.; Wu, R. X.; Ma, H. F.; Sun, G. Z. et al. Synthetic control of two-dimensional NiTe2 single crystals with highly uniform thickness distributions. J. Am. Chem. Soc. 2018, 140, 14217–14223.

[6]

Jin, W. C.; Yeh, P. C.; Zaki, N.; Zhang, D. T.; Sadowski, J. T.; Al-Mahboob, A.; van der Zande, A. M.; Chenet, D. A.; Dadap, J. I.; Herman, I. P. et al. Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 2013, 111, 106801.

[7]

Zeng, Q. S.; Wang, H.; Fu, W.; Gong, Y. J.; Zhou, W.; Ajayan, P. M.; Lou, J.; Liu, Z. Band engineering for novel two-dimensional atomic layers. Small 2015, 11, 1868–1884.

[8]

Cai, Y. Q.; Zhang, G.; Zhang, Y. W. Layer-dependent band alignment and work function of few-layer phosphorene. Sci. Rep. 2014, 4, 6677.

[9]

Hsu, C.; Frisenda, R.; Schmidt, R.; Arora, A.; de Vasconcellos, S. M.; Bratschitsch, R.; van der Zant, H. S. J.; Castellanos-Gomez, A. Thickness-dependent refractive index of 1 L, 2 L, and 3 L MoS2, MoSe2, WS2, and WSe2. Adv. Opt. Mater. 2019, 7, 1900239.

[10]

Lee, C.; Yan, H. G.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 2010, 4, 2695–2700.

[11]

Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D. From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater. 2012, 22, 1385–1390.

[12]

Villaos, R. A. B.; Crisostomo, C. P.; Huang, Z. Q.; Huang, S. M.; Padama, A. A. B.; Albao, M. A.; Lin, H.; Chuang, F. C. Thickness dependent electronic properties of Pt dichalcogenides. npj 2D Mater. Appl. 2019, 3, 2.

[13]

Sun, L. F.; Yan, X. X.; Zheng, J. Y.; Yu, H. D.; Lu, Z. X.; Gao, S. P.; Liu, L. N.; Pan, X. Q.; Wang, D.; Wang, Z. G. et al. Layer-dependent chemically induced phase transition of two-dimensional MoS2. Nano Lett. 2018, 18, 3435–3440.

[14]

Ribeiro-Soares, J.; Janisch, C.; Liu, Z.; Elías, A. L.; Dresselhaus, M. S.; Terrones, M.; Cançado, L. G.; Jorio, A. Second harmonic generation in WSe2. 2D Mater. 2015, 2, 045015.

[15]

Zhang, L.; Yang, T.; Sahdan, M. F.; Arramel; Xu, W. S.; Xing, K. J.; Feng, Y. P.; Zhang, W. J.; Wang, Z.; Wee, A. T. S. Precise layer-dependent electronic structure of MBE-grown PtSe2. Adv. Electron. Mater. 2021, 7, 2100559.

[16]

Cui, F. F.; Zhao, X. X.; Xu, J. J.; Tang, B.; Shang, Q. Y.; Shi, J. P.; Huan, Y. H.; Liao, J. H.; Chen, Q.; Hou, Y. L. et al. Controlled growth and thickness-dependent conduction-type transition of 2D ferrimagnetic Cr2S3 semiconductors. Adv. Mater. 2020, 32, 1905896.

[17]

Ho, C. H. Thickness-dependent carrier transport and optically enhanced transconductance gain in III–VI multilayer InSe. 2D Mater. 2016, 3, 025019.

[18]

Li, B.; Wan, Z.; Wang, C.; Chen, P.; Huang, B.; Cheng, X.; Qian, Q.; Li, J.; Zhang, Z. W.; Sun, G. Z. et al. Van der Waals epitaxial growth of air-stable CrSe2 nanosheets with thickness-tunable magnetic order. Nat. Mater. 2021, 20, 818–825.

[19]

Guo, J. J.; Xia, Q. L.; Wang, X. G.; Nie, Y. Z.; Xiong, R.; Guo, G. H. Temperature and thickness dependent magnetization reversal in 2D layered ferromagnetic material Fe3GeTe2. J. Magn. Magn. Mater. 2021, 527, 167719.

[20]

Liu, Y.; Wu, L. J.; Tong, X.; Li, J.; Tao, J.; Zhu, Y. M.; Petrovic, C. Thickness-dependent magnetic order in CrI3 single crystals. Sci. Rep. 2019, 9, 13599.

[21]

Hu, D. K.; Zhao, T. Q.; Ping, X. F.; Zheng, H. S.; Xing, L.; Liu, X. Z.; Zheng, J. Y.; Sun, L. F.; Gu, L.; Tao, C. G. et al. Unveiling the layer-dependent catalytic activity of PtSe2 atomic crystals for the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2019, 58, 6977–6981.

[22]

Shao, G. L.; Xu, Y. Y.; Liu, S. Controllable preparation of 2D metal-semiconductor layered metal dichalcogenides heterostructures. Sci. China Chem. 2019, 62, 295–298.

[23]

Shao, G. L.; Xue, X. X.; Zhou, X. L.; Xu, J.; Jin, Y. Y.; Qi, S. Y.; Liu, N.; Duan, H. G.; Wang, S. S.; Li, S. S. et al. Shape-engineered synthesis of atomically thin 1T-SnS2 catalyzed by potassium halides. ACS Nano 2019, 13, 8265–8274.

[24]

Shao, G. L.; Xue, X. X.; Liu, X.; Zhang, D. L.; Jin, Y. Y.; Wu, Y. W.; You, B. Y.; Lin, Y. C.; Li, S. S.; Suenaga, K. et al. Twist angle-dependent optical responses in controllably grown WS2 vertical homojunctions. Chem. Mater. 2020, 32, 9721–9729.

[25]

Shao, G. L.; Lu, Y. Z.; Hong, J. H.; Xue, X. X.; Huang, J. Q.; Xu, Z. Y.; Lu, X. C.; Jin, Y. Y.; Liu, X.; Li, H. M. et al. Seamlessly splicing metallic SnxMo1−xS2 at MoS2 edge for enhanced photoelectrocatalytic performance in microreactor. Adv. Sci. 2020, 7, 2002172.

[26]

Liu, H.; Qi, G. P.; Tang, C. S.; Chen, M. L.; Chen, Y.; Shu, Z. W.; Xiang, H. Y.; Jin, Y. Y.; Wang, S. S.; Li, H. M. et al. Growth of large-area homogeneous monolayer transition-metal disulfides via a molten liquid intermediate process. ACS Appl. Mater. Interfaces 2020, 12, 13174–13181.

[27]

Zhou, Y.; Wu, D.; Zhu, Y. H.; Cho, Y. J.; He, Q.; Yang, X.; Herrera, K.; Chu, Z. D.; Han, Y.; Downer, M. C. et al. Out-of-plane piezoelectricity and ferroelectricity in layered α-In2Se3 nanoflakes. Nano Lett. 2017, 17, 5508–5513.

[28]

Liu, L. X.; Dong, J. Y.; Huang, J. Q.; Nie, A. M.; Zhai, K.; Xiang, J. Y.; Wang, B. C.; Wen, F. S.; Mu, C. P.; Zhao, Z. S. et al. Atomically resolving polymorphs and crystal structures of In2Se3. Chem. Mater. 2019, 31, 10143–10149.

[29]

Mohapatra, P. K.; Ranganathan, K.; Dezanashvili, L.; Houben, L.; Ismach, A. Epitaxial growth of In2Se3 on monolayer transition metal dichalcogenide single crystals for high performance photodetectors. Appl. Mater. Today 2020, 20, 100734.

[30]

Almeida, G.; Dogan, S.; Bertoni, G.; Giannini, C.; Gaspari, R.; Perissinotto, S.; Krahne, R.; Ghosh, S.; Manna, L. Colloidal monolayer β-In2Se3 nanosheets with high photoresponsivity. J. Am. Chem. Soc. 2017, 139, 3005–3011.

[31]

Zou, Z. X.; Li, D.; Liang, J. W.; Zhang, X. H.; Liu, H. W.; Zhu, C. G.; Yang, X.; Li, L. H.; Zheng, B. Y.; Sun, X. X. et al. Epitaxial synthesis of ultrathin β-In2Se3/MoS2 heterostructures with high visible/near-infrared photoresponse. Nanoscale 2020, 12, 6480–6488.

[32]

Feng, W.; Zheng, W.; Gao, F.; Chen, X. S.; Liu, G. B.; Hasan, T.; Cao, W. W.; Hu, P. A. Sensitive electronic-skin strain sensor array based on the patterned two-dimensional α-In2Se3. Chem. Mater. 2016, 28, 4278–4283.

[33]

Wang, J. W.; Cai, X. B.; Shi, R.; Wu, Z. F.; Wang, W. J.; Long, G.; Tang, Y. J.; Cai, N. D.; Ouyang, W. K.; Geng, P. et al. Twin defect derived growth of atomically thin MoS2 dendrites. ACS Nano 2018, 12, 635–643.

[34]

Li, S. Y.; Chen, X. Q.; Liu, F. M.; Chen, Y. F.; Liu, B. Y.; Deng, W. J.; An, B. X.; Chu, F. H.; Zhang, G. Q.; Li, S. L. et al. Enhanced performance of a CVD MoS2 photodetector by chemical in situ n-type doping. ACS Appl. Mater. Interfaces 2019, 11, 11636–11644.

[35]

Li, J.; Yang, X. D.; Liu, Y.; Huang, B. L.; Wu, R. X.; Zhang, Z. W.; Zhao, B.; Ma, H. F.; Dang, W. Q.; Wei, Z. et al. General synthesis of two-dimensional van der Waals heterostructure arrays. Nature 2020, 579, 368–374.

[36]

Lin, M.; Wu, D.; Zhou, Y.; Huang, W.; Jiang, W.; Zheng, W. S.; Zhao, S. L.; Jin, C. H.; Guo, Y. F.; Peng, H. L. et al. Controlled growth of atomically thin In2Se3 flakes by van der Waals epitaxy. J. Am. Chem. Soc. 2013, 135, 13274–13277.

[37]

Cui, C. J.; Xue, F.; Hu, W. J.; Li, L. J. Two-dimensional materials with piezoelectric and ferroelectric functionalities. npj 2D Mater. Appl. 2018, 2, 18.

[38]

Dagan, R.; Vaknin, Y.; Henning, A.; Shang, J. Y.; Lauhon, L. J.; Rosenwaks, Y. Two-dimensional charge carrier distribution in MoS2 monolayer and multilayers. Appl. Phys. Lett. 2019, 114, 101602.

[39]

Feng, W.; Gao, F.; Hu, Y. X.; Dai, M. J.; Liu, H.; Wang, L. F.; Hu, P. A. Phase-engineering-driven enhanced electronic and optoelectronic performance of multilayer In2Se3 nanosheets. ACS Appl. Mater. Interfaces 2018, 10, 27584–27588.

[40]
You, H.; Zhuo, Z. W.; Lu, X. F.; Liu, Y. W.; Guo, Y. B.; Wang, W. B.; Yang, H.; Wu, X. J.; Li, H. Q.; Zhai, T. Y. 1T′-MoTe2-based on-chip electrocatalytic microdevice: A platform to unravel oxidation-dependent electrocatalysis. CCS Chem. 2019, 1, 396–406.
[41]

Yang, H.; He, Q. Y.; Liu, Y. W.; Li, H. Q.; Zhang, H.; Zhai, T. Y. On-chip electrocatalytic microdevice: An emerging platform for expanding the insight into electrochemical processes. Chem. Soc. Rev. 2020, 49, 2916–2936.

[42]
Huang, J. Z.; Zhuang, Z. C.; Zhao, Y.; Chen, J. Q.; Zhuo, Z. W.; Liu, Y. W.; Lu, N.; Li, H. Q.; Zhai, T. Y. Back-gated van der Waals heterojunction manipulates local charges toward fine-tuning hydrogen evolution. Angew. Chem. , Int. Ed. , in press,DOI: 10.1002/anie.202203522.
[43]

Shao, G. L.; Xue, X. X.; Wu, B. B.; Lin, Y. C.; Ouzounian, M.; Hu, T. S.; Xu, Y. Q.; Liu, X.; Li, S. S.; Suenaga, K. et al. Template-assisted synthesis of metallic 1T'-Sn0. 3W0. 7S2 nanosheets for hydrogen evolution reaction. Adv. Funct. Mater. 2020, 30, 1906069.

[44]

Zhang, X.; Chen, A.; Chen, L. T.; Zhou, Z. 2D materials bridging experiments and computations for electro/photocatalysis. Adv. Energy Mater. 2022, 12, 2003841.

[45]

Li, H.; Tsai, C.; Koh, A. L.; Cai, L. L.; Contryman, A. W.; Fragapane, A. H.; Zhao, J. H.; Han, H. S.; Manoharan, H. C.; Abild-Pedersen, F. et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 2016, 15, 48–53.

[46]

Shao, G. L.; Xiang, H. Y.; Huang, M. J.; Zong, Y.; Luo, J.; Feng, Y. X.; Xue, X. X.; Xu, J.; Liu, S.; Zhou, Z. S vacancies in 2D SnS2 accelerating hydrogen evolution reaction. Sci. China Mater. 2022, 65, 1833–1841.

[47]

Xu, J.; Shao, G. L.; Tang, X.; Lv, F.; Xiang, H. Y.; Jing, C. F.; Liu, S.; Dai, S.; Li, Y. G.; Luo, J. et al. Frenkel-defected monolayer MoS2 catalysts for efficient hydrogen evolution. Nat. Commun. 2022, 13, 2193.

[48]

Uhlig, M. R.; Martin-Jimenez, D.; Garcia, R. Atomic-scale mapping of hydrophobic layers on graphene and few-layer MoS2 and WSe2 in water. Nat. Commun. 2019, 10, 2606.

File
12274_2022_4716_MOESM1_ESM.pdf (1.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 16 April 2022
Revised: 25 June 2022
Accepted: 29 June 2022
Published: 10 August 2022
Issue date: January 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Nos. 22175060 and 21975067) and Natural Science Foundation of Hunan Province of China (Nos. 2021JJ10014 and 2021JJ30092). X. X. X thanks to the National Science Foundation of China (No. 12104385). The computational resources were provided by the supercomputer TianHe in Changsha, China.

Return