This study proposes a rebalancing method for a dockless e-micromobility sharing system, employing both trucks and users. Platform-owned trucks relocate and recharge e-micromobility vehicles using battery swapping technology. In addition, some users intending to rent an e-micromobility vehicle are offered incentives to end their trips in defined locations to assist with rebalancing. The integrated formulation of rebalancing and recharging accounts for each e-micromobility vehicle's characteristics, such as location and charge level. The problem is formulated as a mixed binary problem, which minimizes operational costs and total unmet demand while maximizing the system's profit. To solve the optimization problem, a Branch and Bound method is employed. Rebalancing decisions and routing plans of each truck are obtained by solving the optimization problem. We simulate an on-demand shared e-micromobility system with the proposed integrated rebalancing method and conduct numerical studies. The results indicate that the proposed method enhances system performance and user travel times.
Publications
- Article type
- Year
Article type
Year

Communications in Transportation Research 2024, 4(4): 100155
Published: 26 November 2024
Downloads:3
Total 1