Finding more specific subcategories within a larger category is the goal of fine-grained image classification (FGIC), and the key is to find local discriminative regions of visual features. Most existing methods use traditional convolutional operations to achieve fine-grained image classification. However, traditional convolution cannot extract multi-scale features of an image and existing methods are susceptible to interference from image background information. Therefore, to address the above problems, this paper proposes an FGIC model (Attention-PCNN) based on hybrid attention mechanism and pyramidal convolution. The model feeds the multi-scale features extracted by the pyramidal convolutional neural network into two branches capturing global and local information respectively. In particular, a hybrid attention mechanism is added to the branch capturing global information in order to reduce the interference of image background information and make the model pay more attention to the target region with fine-grained features. In addition, the mutual-channel loss (MC-LOSS) is introduced in the local information branch to capture fine-grained features. We evaluated the model on three publicly available datasets CUB-200-2011, Stanford Cars, FGVC-Aircraft, etc. Compared to the state-of-the-art methods, the results show that Attention-PCNN performs better.
Publications
- Article type
- Year
- Co-author
Year

Tsinghua Science and Technology 2025, 30(3): 1283-1293
Published: 30 December 2024
Downloads:25
Total 1