Sort:
Open Access Research paper Issue
C/C-HfC-SiC composites with simultaneous the resistance to ultra-high temperature airflow erosion and high temperature oxidation
Journal of Materiomics 2025, 11(1): 100846
Published: 13 March 2024
Abstract Collect

HfC-SiC modified C/C composites containing in situ formed Si-HfC-HfSi2 ablation resistant layer and SiC oxidation resistant layer were successfully prepared by reactive melt infiltration (RMI) combined with gaseous silicon infiltration (GSI). A comparative study was conducted on the anti-oxidation and anti-ablation performance of the C/C-HfC-SiC composites with GSI (noted as RG-CHS) and without GSI (noted as R-CHS). After oxidation at 1,500 ℃ for 200 min, the oxide film of RG-CHS remained intact. The mass and linear ablation rates decreased from 1.31 mg/s and 7.36 μm/s to 0.12 mg/s and −0.22 μm/s after GSI process, respectively. The introduction of low melting point phases and reducing surface defects can improve the high temperature oxidation resistance and plasma ablation resistance of the composites.

Open Access Full Length Article Issue
Ablation behaviour of C/C-HfC-SiC composites prepared by joint route of precursor infiltration and pyrolysis and gaseous silicon infiltration
Chinese Journal of Aeronautics 2023, 36(9): 426-436
Published: 24 July 2023
Abstract Collect

C/C-SiC-HfC composites were fabricated by using Precursor Infiltration and Pyrolysis (PIP) combined with Gaseous Silicon Infiltration (GSI) process. Different GSI temperatures (1900 ℃ and 2100 ℃) were selected. The combination of PIP and GSI could significantly reduce the preparation time of the composites. The morphology displaying a rich-Si layer was formed on the surface of the composites prepared at GSI 2100 ℃. Ablation performance of the composites was investigated by oxyacetylene torch. The results showed that after ablation for 120 s, compared to the composites prepared by PIP + 1900 ℃ GSI, the linear and mass ablation rates of the composites fabricated by PIP + 2100 ℃ GSI were decreased from 8.05 μm/s to 5.06 μm/s and from 1.61 mg/s to 1.03 mg/s, respectively. The coverage of the rich-Si surface layer promoted the generation of more SiO2 during ablation, which not only benefited for decreasing the surface temperature but also contributed to the formation of H-Si-O glass and the HfO2 skeleton, thus better resisting the denudation of the oxyacetylene torch.

Total 2