Publications
Sort:
Research Article Online first
Acidic electroreduction CO2 to formic acid via interfacial modification of Bi nanoparticles at industrial-level current
Nano Research
Published: 23 March 2024
Downloads:58

Electrocatalytic CO2 reduction reaction (CO2RR) in acidic media is a promising approach to overcome the unavoidable formation of carbonates in alkaline or neutral electrolytes. However, the proton-rich environment near the catalyst surface favors hydrogen evolution reactions (HER), leading to lower energy efficiency of the desired products, especially in industrial-level current densities. Here, quaternary ammonium cationic surfactant (cetyltrimethylammonium bromide (CTAB)) was introduced into acidic electrolyte to modulate the interfacial microenvironment, which greatly enhanced CO2 electroreduction to formic acid (HCOOH) at the Bi/C nanoparticles electrode. Using a Bi/C nanoparticles electrode with CTAB added, constant production of formic acid was enabled with a cathodic energy efficiency of > 40% and maximum FEHCOOH (FE = Faradaic efficiency) of 86.2% at −400 mA·cm−2 over 24 h. Combined with in-situ attenuated total reflection Fourier transform infrared spectroscopy, the concentration of *OCHO intermediates significantly increased after CTAB modification, confirming that the hydrophobic interface microenvironment formed by dynamic adsorption of positively charged long alkyl chains on Bi/C nanoparticle electrodes inhibited HER and improved the selectivity of CO2RR to HCOOH.

total 1