Sort:
Research Article Online first
Controlling electrodeposited Ni layers by different-sized graphene oxides enables conductive e-textiles for the highly sensitive electrochemical detection of glucose
Nano Research
Published: 19 April 2024
Downloads:9

With the increasing popularity of wearable electronic devices, there is an urgent demand to develop electronic textiles (e-textiles) for device fabrication. Nevertheless, the difficulty in reconciliation between conductivity and manufacturing costs hinders their large-scale practical applications. Herein, we reported a facile and economic method for preparing conductive e-textiles. Specifically, nonconductive polypropylene (PP) was wrapped by reduced graphene oxide (rGO), followed by the electrodeposition of Ni nanoparticles (NPs). Notably, modulating the sheet size of graphene oxide (GO) resulted in controllable deposition of Ni NPs with adjustable size, allowing for controlled manipulations over the structures, morphologies, and conductivity of the obtained e-textiles, which influenced their performance in electrochemical glucose detection subsequently. The optimal material, denoted as Ni/rGO0.2/PP, exhibited an impressive conductivity of 7.94 × 104 S·m−1. With regard to the excellent conductivity of the as-prepared e-textiles and the high electrocatalytic activity of Ni for glucose oxidation, the as-prepared e-textiles were subjected to glucose detection. It was worth emphasizing that the Ni/rGO0.2/PP-based electrode demonstrated promising performance for nonenzymatic/label-free glucose detection, with a detection limit of 0.36 μM and a linear response range of 0.5 μM to 1 mM. This study paves the way for further development and application prospects of conductive e-textiles.

Research Article Issue
Hierarchical cobalt-molybdenum layered double hydroxide arrays power efficient oxygen evolution reaction
Nano Research 2024, 17 (6): 5080-5086
Published: 14 March 2024
Downloads:20

Transition metal-based layered double hydroxides (LDHs) have been capable of working efficiently as catalysts in the basic oxygen evolution reaction (OER) for sustaining hydrogen production of alkaline water electrolysis. Nevertheless, exploring new LDH-based electrocatalysts featuring both remarkable activity and good stability is still in high demand, which is pivotal for comprehensive understanding and impressive improvement of the sluggish OER kinetics. Here, a series of bimetallic (Co and Mo) LDH arrays were designed and fabricated via a facile and controlled strategy by incorporating a Mo source into presynthesized Co-based metal-organic framework (MOF) arrays on carbon cloth (CC), named as ZIF-67/CC arrays. We found that tuning the Mo content resulted in gradual differences in the structural properties, surface morphology, and chemical states of the resulting catalysts, namely CoMox-LDH/CC (x representing the added weight of the Mo source). Gratifyingly, the best-performing CoMo0.20-LDH/CC electrocatalyst demonstrates a low overpotential of only 226 mV and high stability at a current density of 10 mA·cm−2, which is superior to most LDH-based OER catalysts reported previously. Furthermore, it only required 1.611 V voltage to drive the overall water splitting device at the current density of 10 mA·cm−2. The present study represents a significant advancement in the development and applications of new OER catalysts.

total 2