Li-S batteries (LSBs) have been considering as new and promising energy storage systems because of the high theoretical energy density and low price. Nevertheless, their practical application is inhibited by several factors, including poor electrical conductivity of electrode materials, greatly volumetric variation, as well as the polysulfide formation upon the cycling. To address these problems, it is imperative to develop and design effective and suitable sulfur host anode materials. Metal organic frameworks (MOFs)-based cathode materials, possessing their good conductivity and easy morphology design, have been extensively studied and exhibited enormously potential in LSBs. In this review, a comprehensive overview of MOFs-based sulfur host materials is provided, including their electrochemical reaction mechanisms, related evaluation parameters, and their performances used in LSBs in the past few years. In particular, the recent advances using in-situ characterization technologies for investigating the electrochemical reaction mechanism in LSBs are presented and highlighted. Additionally, the challenges and prospects associated with future research on MOF-related sulfur host materials are discussed. It is anticipated to offer the guidance for the identification of suitable MOFs-based sulfur cathode materials for high-performance LSBs, thereby contributing for the achievement of a sustainable and renewable society.
Publications
- Article type
- Year
- Co-author
Article type
Year
Review Article
Issue
Metal organic frameworks-based cathode materials for advanced Li-S batteries: A comprehensive review
Nano Research 2024, 17 (4): 2592-2618
Published: 08 February 2024
Downloads:144
Total 1