Publications
Sort:
Research Article Issue
Carbon coated LaFe0.92Pd0.08O3 composites for catalytic transfer hydrogenation: Balance in the ability of substrates adsorption and conversion
Nano Research 2024, 17 (5): 3724-3732
Published: 21 November 2023
Downloads:72

Catalytic transfer hydrogenation (CTH) is a green and efficient pathway for selective hydrogenation of unsaturated aldehydes and ketones. However, managing the abilities of solid catalysts to adsorb substrates and to convert them into desired products is a challenging task. Herein, we report the synthesis of carbon coated LaFe0.92Pd0.08O3 composites (LFPO-8@C) for CTH of benzaldehyde (BzH) into benzyl alcohol (BzOH), using isopropanol (IPA) as hydrogen source. The coating with carbon improves the ability to adsorb/transfer reactants from solution to active sites, and the doping of Pd2+ at Fe3+ site strengthens the ability of LaFeO3 to convert BzH into BzOH. A balanced point between them (i.e., abilities to adsorb BzH and to convert BzH into BzOH) is obtained at LFPO-8@C, which exhibits a BzOH formation rate of 3.88 mmol·gcat−1·h−1 at 180 °C for 3 h, which is 1.50 and 2.72 times faster than those of LFPO-8 and LaFeO3@C. A reaction mechanism is proposed, in which the acidic sites (e.g., Fe4+, oxygen vacancy) are used for the activation of C=O bond of BzH and O–H bond of IPA, and the basic sites (e.g., lattice oxygen) for the activation of α–H (O–H) bond of IPA.

total 1