Publications
Sort:
Open Access Research Article Issue
Detection of the Anticancer and Genotoxic Activities of Heliotropium eichwaldi L.-fabricated Silver Nanoparticles on BHK-21 Cells and Human Blood Lymphocytes Using MTT and Comet Assays
Nano Biomedicine and Engineering 2023, 15 (4): 389-400
Published: 07 November 2023
Downloads:39

The possible treatment of cancer with nanoparticles (NPs) would be carried out via inoculation into the veins; as a result, the NPs would come into contact with white blood cells (WBCs) and red blood cells (RBCs) prior to reaching the target cancerous cells. In the current study, the genotoxicity and cytotoxicity potential of silver NPs (AgNPs) against human blood lymphocytes and baby hamster kidney-21 (BHK-21) cells was tested using comet and 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assays, respectively. First, AgNPs were created using a Heliotropium eichwaldi L. (HE) extract. These AgNPs were then confirmed by ultraviolet–visible (UV–Vis) spectroscopy, which yielded a sharp peak at 416 nm with a maximum absorbance of 1.92. Moreover, an X-ray diffraction (XRD) analysis confirmed the crystalline nature and particle size (19.79 nm) of AgNPs, whereas scanning electron microscopy (SEM) revealed their irregular morphology and size of 30 nm. In turn, an EDX analysis indicated that AgNPs had an appreciable composition of Ag ions (30.68%). According to the comet assay, the HE-AgNPs, and standard H2O2 caused highly significant damage to DNA compared with HE extract. The comet assay was reported in terms of the total comet score (TCS). In the case of the MTT assay, a dose-dependent cytotoxicity was noted, in which doxorubicin, and AgNPs were more potent against BHK-21 cells compared with a plant extract. From these results, it is evident that the green-synthesized AgNPs interacted with blood lymphocytes and BHK-21 cells, caused damage to DNA via oxidative stress, and finally triggered cell death (apoptosis). However, further studies aimed at reducing their potential threats are recommended.

Open Access Research Article Issue
Acetylcholinesterase Activity in the Brain of Rats: Presence of an Inhibitor of Enzymatic Activity in Heliotropium eichwaldi L. Induced Silver/Gold Allied Bimetallic Nanoparticles
Nano Biomedicine and Engineering 2023, 15 (3): 317-329
Published: 12 October 2023
Downloads:30

A simple green method for the production of silver/gold bimetallic nanoparticles (Ag/Au BNPs) using a Heliotropium eichwaldi L. (HE) extract was designed in this study. The reduction of Ag/Au metals to stable Ag/Au BNPs within 24 h at pH 5 using 1 mL of HE at 40 °C signifies a greater rate of reaction compared with chemically elaborated synthesis. The confirmation of the synthesis and the examination of the size, shape, and elemental composition of these BNPs were performed using visible absorption spectroscopy, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX). Stable, irregular-rod-shaped, and crystalline Ag/Au BNPs with a well-defined 6-nm diameter and a blue shift λmax of 532 nm were synthesized using the HE extract. Moreover, the anti-cholinesterase (anti-AChE) potential of the Ag/Au BNPs was tested as a treatment for Alzheimer’s disease (AD). An excellent anti-AChE activity (IC50, 71.2 ± 0.22 μg/mL) was observed for these biogenic-synthesized NPs. A statistical analysis revealed that Ag/Au BNPs inhibited AChE competitively, according to a Lineweaver–Burk plot, with Km increasing from 0.019 to 0.063 (288%–1185.7%) and Vmax remaining constant. The Ag/Au BNPs also caused an increase in KIapp, from 128 to 1184 (236%–828%), whereas they did not affect Vmaxiapp. The Km, KI, and Ki values were also calculated to be 0.0053 mmol/L, 595.25 µg, and 80 µg, respectively. Therefore, it is concluded that small-size, stable, and potent Ag/Au BNPs were synthesized successfully from HE extracts that exhibited anti-AChE activity, which renders them a significant remedy for AD.

Open Access Research Article Issue
Kickxia elatine-assisted Bio-fabrication of Nano-silver and Their Antioxidant, Anti-alpha Amylase, and Anti-acetylcholinesterase Properties
Nano Biomedicine and Engineering 2023, 15 (2): 150-169
Published: 21 August 2023
Downloads:44

Green synthesis of silver nanoparticles (AgNPs) is attaining more attention from researchers over chemical fabrication due to their unique properties such as high dispersion in solution, surface-to-volume ratio, low toxicity, and easy preparation. In this paper, a biogenic synthesis of Kickxia elatine-based-silver nanoparticles (KE-AgNPs) was carried out by using K. elatine plant extract (KEE). The characterization of synthesized AgNPs was done by ultraviolet (UV) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray (EDX), and Fourier transform infrared (FTIR) analyses. XRD screening confirmed the crystalline nature of KE-AgNPs with 42.47 nm in size. SEM analysis confirmed the rounded shape AgNPs with 50 nm in size. FTIR confirmed the various functional groups that contribute to the stabilization and reduction of AgNPs. EDX displayed an intense peak (3.2 keV), presenting that Ag has a chief component with 61.67%. These AgNPs showed a potential antioxidant activity against 2,2'-azino-bis-(3-ethyl) benzothiazoline-6-sulfonic acid (ABTS, 66.9%), diphenyl-1-picrylhydrazyl (DPPH, 72.49%), H2O2 (69.42%), ferric-reducing antioxidant power assay (FRAP, 70.04%), and ammonium molybdenum (68.77%) at the highest concentration of 160 μg/mL. Statistical analysis showed that both KEE and their AgNPs inhibit alpha-amylase (α-amylase) in the mixed type mode, i.e., Michaelis constant (Km) increased (16.62%–55.45% and 49.77%–134.78% for KE-AgNPs) and Vmax decreased (2.68%–12.98% and 4.44%–11%), respectively. In the case of anti-acetylcholinesterase studies, both KEE and AgNPs revealed a mixed-type inhibition against acetylcholinesterase (AchE), i.e., Km increased (13.53%–101.48% and 10.10%–38.04%), while Vmax decreased (12.66%–52.47% and 11.91%–41.69%) for KEE and KE-AgNPs, respectively. Therefore, the synthesized AgNPs could be used for various purposes due to their non-toxicity, eco-friendly, and compact ability for therapeutic and diagnostic applications.

total 3