Fracturing and water flooding have been popular technologies to achieve the effective development of tight oil reservoirs in recent years. However, in the late stage of production, the oil recovery rate declines with a rapid increase in the water cut. Water huff-puff could improve reservoir energy; however, the displacement and imbibition in the micro-nano pore throat and fracture systems are complex processes with unclear characteristics and position. Therefore, it is urgent to study the coupling mechanisms of oil-water displacement and imbibition in tight oil reservoirs. In this work, based on the phase field method of COMSOL Multiphysics software, we establish a two-dimensional microscopic numerical simulation model of the pore-fracture system, and carry out displacement-imbibition simulation programs of different injection media (water and surfactant) and injection methods (displacement, displacement-imbibition). By comparing the saturations and pressure distributions of different simulation programs, we analyze the changes in the oil-water interface, and summarize the action conditions of counter-current imbibition and pore throat limit. Finally, reasonable development suggestions are proposed for tight oil reservoirs.
Publications
- Article type
- Year
- Co-author
Article type
Year
Open Access
Original Article
Issue
Capillarity 2023, 7(1): 13-24
Published: 30 March 2023
Downloads:23
Total 1