Sort:
Open Access Research Article Issue
Delving into high-quality SVBRDF acquisition: A new setup and method
Computational Visual Media 2024, 10 (3): 523-541
Published: 09 February 2024
Abstract PDF (20.8 MB) Collect
Downloads:15

In this study, we present a new and innovative framework for acquiring high-quality SVBRDF maps. Our approach addresses the limi-tations of the current methods and proposes a new solution. The core of our method is a simple hardware setup consisting of a consumer-level camera, LED lights, and a carefully designed network that can accurately obtain the high-quality SVBRDF properties of a nearly planar object. By capturing a flexible number of images of an object, our network uses different subnetworks to train different property maps and employs appropriate loss functions for each of them. To further enhance the quality of the maps, we improved the network structure by adding a novel skip connection that connects the encoder and decoder withglobal features. Through extensive experimentation using both synthetic and real-world materials, our results demonstrate that our method outperforms previous methods and produces superior results. Furthermore, our proposed setup can also be used to acquire physically based rendering maps of special materials.

Regular Paper Issue
Progressive Furniture Model Decimation with Texture Preservation
Journal of Computer Science and Technology 2019, 34 (6): 1258-1268
Published: 22 November 2019
Abstract Collect

In digital furniture design, skillful designers usually use professional software to create new furniture designs with various textures and then take advantage of rendering tools to produce eye-catching design results. Generally, a fine-grained furniture model holds many geometric details, inducing significant time cost to model rendering and large data size for storage that are not desired in application scenarios where efficiency is greatly emphasized. To accelerate the rendering process while keeping good rendering results as many as possible, we develop a novel decimation technique which not only reduces the number of faces on furniture models, but also retains their geometric and texture features. Two metrics are utilized in our approach to measure the distortion of texture features. Considering these two metrics as guidance for decimation, high texture distortion can be avoided in simplifying the geometric models. Therefore, we are able to build multi-level representations with different detail levels based on the initial design. Our experimental results show that the developed technique can achieve excellent visual effects on the decimated furniture model.

Total 2