Sort:
Open Access Full Length Article Issue
Downregulated nuclear lncRNA NRON inhibits SHP2/Wnt/β-catenin signaling and cardiomyocyte differentiation during the development of Tetralogy of Fallot
Genes & Diseases 2023, 10 (3): 750-752
Published: 23 October 2022
Downloads:17
Open Access Full Length Article Issue
Intranuclear cardiac troponin I plays a functional role in regulating Atp2a2 expression in cardiomyocytes
Genes & Diseases 2022, 9 (6): 1689-1700
Published: 15 May 2021
Downloads:3

In the past studies, it is shown that cardiac troponin I (cTnI, encoded by TNNI3), as a cytoplasmic protein, is an inhibitory subunit in troponin complex, and involves in cardiomyocyte diastolic regulation. Here, we assessed a novel role of cTnI as a nucleoprotein. Firstly, the nuclear translocation of cTnI was found in mouse, human fetuses and rat heart tissues. In addition, there were differences in percentage of intranuclear cTnI in different conditions. Based on weighted gene co-expression network analyses (WGCNA) and verification in cell experiments, a strong expression correlation was found between TNNI3 and Atp2a2, which encodes sarco-endoplasmic reticulum Ca2+ ATPase isoform 2a (SERCA2a), and involves in ATP hydrolysis and Ca2+ transient. TNNI3 gain and loss caused Atpa2a2 increase/decrease in a dose-dependent manner both in mRNA and protein levels, in vivo and in vitro. By using ChIP-sequence we demonstrated specific binding DNA sequences of cTnI were enriched in ATP2a2 promoter −239~–889 region and the specific binding sequence motif of cTnI was analyzed by software as "CCAT", which has been reported to be required for YY1 binding to the promoter region of YY1-related genes. Moreover, it was further verified that pcDNA3.1 (−)-TNNI3 could express cTnI proteins and increase the promoter activity of Atp2a2 through luciferase report assay. In the end, we evaluated beat frequencies, total ATP contents, Ca2+ transients in TNNI3-siRNA myocardial cells. These findings indicated, for the first time, cTnI may regulate Atp2a2 in cardiomyocytes as a co-regulatory factor and participate in the regulation of intracellular Ca ions.

Open Access Research Article Issue
Cardiac troponin I R193H mutant interacts with HDAC1 to repress phosphodiesterase 4D expression in cardiomyocytes
Genes & Diseases 2021, 8 (4): 569-579
Published: 10 January 2020
Downloads:1

Cardiac Troponin I (cTnI) is a subunit of the thin filament involved in regulation of heart contraction. Mutated cTnI accounts for most genetic mutations associated with restrictive cardiomyopathy (RCM). We previously found phosphodiesterase 4D (PDE4D) decreased in RCM mice with cTnIR193H mutation and the mutant cTnI might be involved in PDE4D reduction. This study aims to elucidate a novel role of cTnIR193H mutant as a gene regulator. Overexpression of cTnIR193H mutant in cardiomyocytes showed decrease in PDED4D protein expression, while the enrichment of histone deacetylase 1 (HDAC1) was increased along with decreases in acetylated lysine 4 (acH3K4) and 9 (acH3K9) levels in the PDE4D promoter. HDAC1 overexpression could also downregulate PDE4D via reducing acH3K4 and acH3K9 levels. Co-IP assays showed that cTnIR193H mutant owed increased binding ability to HDAC1 compared with wild type cTnI. EGCG as a HDAC1 inhibitor could diminish the strength of cTnIR193H-HDAC1 interactions and alleviate the reduction in PDE4D expression. Together, our data indicated that cTnIR193H mutant could repress PDE4D expression in cardiomyocytes through HDAC1 associated histone deacetylation modification. Unlike the typical function of cTnI in cytoplasm, our study suggested a novel role of cTnI mutants in nuclei in regulating gene expression.

Open Access Review Article Issue
Molecular mechanisms of congenital heart disease in down syndrome
Genes & Diseases 2019, 6 (4): 372-377
Published: 08 July 2019
Downloads:1

Down syndrome (DS), as a typical genomic aneuploidy, is a common cause of various birth defects, among which is congenital heart disease (CHD). 40–60% neonates with DS have some kinds of CHD. However, the molecular pathogenic mechanisms of DS associated CHD are still not fully understood. This review summarizes available studies on DS associated CHD from seven aspects so as to provide a crucial and updated overview of what we known so far in this domain.

total 4