Sort:
Open Access Research Article Online First
Controlling interfacial lubrication: Modulating MXene-based hydrogel properties with near-infrared light
Friction
Published: 09 December 2024
Abstract PDF (6.2 MB) Collect
Downloads:35

Stimulus-responsive polymers have steadily grown in significance over the past few decades, with extensive research dedicated to the intelligent design of friction materials inspired by natural processes. In this study, we introduce a hydrogel system, CS-MXene@P(AAc-CaAc-co-HEMA-Br)@PSPMA (M-PAAc@PSPMA), that adeptly modulates its modulus across temperature variations, subsequently influencing the interface friction coefficient. The integration of CS-MXene as a photothermal agent facilitates interface temperature modulation under near-infrared (NIR) light irradiation. By manipulating the temperature, the modulus of the P(AAc-CaAc-co-HEMA-Br) hydrogel can be effectively regulated. Moreover, the poly(3-sulfopropyl methacrylate potassium) (PSPMA) polyelectrolyte brush further refines the lubricating attributes of the system. Under ambient conditions, the hydrogel is characterized by a low modulus, heightened flexibility, diminished strength, and a friction coefficient of approximately 0.24. In contrast, under NIR irradiation, the modulus, hardness, and strength of the hydrogel increased, and the friction coefficient decreased to approximately 0.1. This innovative hydrogel system offers advanced friction control by modulating its modulus, setting a precedent for the future development of intelligent lubricant hydrogels, interface detection, and regulated transmission.

Open Access Research Article Issue
Excellent lubricating hydrogels with rapid photothermal sterilization for medical catheters coating
Friction 2024, 12(12): 2679-2691
Published: 18 September 2024
Abstract PDF (4.1 MB) Collect
Downloads:13

Bacterial infection and tissue damage caused by friction are two major threats to patients’ health in medical catheter implantation. Hydrogels with antibacterial and lubrication effects are competitive candidates for catheter coating materials. Photothermal therapy (PTT) is a highly efficient bactericidal method. Here, a composite hydrogel containing MXene nanosheets and hydrophilic 3-sulfopropyl methacrylate potassium salt (SPMK) is reported, which is synthesized through the one-pot method and heat-initiated polymerization. The hydrogel shows excellent antibacterial performance against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) in 3 min in the air or 20 min in the water environment under near-infrared light (NIR; 808 nm) irradiation. The friction coefficient of the hydrogel is about 0.11, which is 48% lower than that without SPMK. The rapid photothermal sterilization is attributed to the outstanding antibacterial ability and thermal effect of photoactivated MXene. The ultra-low friction is the result of the hydration lubrication mechanism. This study provides a potential strategy for the surface coatings of biomedical catheters, which enables rapid sterilization and extremely low interface resistance between catheters and biological tissues.

Open Access Research Article Issue
Achieving near-infrared-light-mediated switchable friction regulation on MXene-based double network hydrogels
Friction 2024, 12(1): 39-51
Published: 13 March 2023
Abstract PDF (3 MB) Collect
Downloads:22

MXene possesses great potential in enriching the functionalities of hydrogels due to its unique metallic conductivity, high aspect ratio, near-infrared light (NIR light) responsiveness, and wide tunability, however, the poor compatibility of MXene with hydrogels limits further applications. In this work, we report a uniformly dispersed MXene-functionalized poly-N-isopropylacrylamide (PNIPAM)/poly-2-acrylamido-2-methyl-1-propanesulfonic acid (PAMPS) double network hydrogel (M–DN hydrogel) that can achieve switchable friction regulation by using the NIR light. The dispersity of MXene in hydrogels was significantly improved by incorporating the chitosan (CS) polymer. This M–DN hydrogel showed much low coefficient of friction (COF) at 25 °C due to the presence of hydration layer on hydrogel surface. After illuminating with the NIR light, M–DN hydrogel with good photothermal effect rapidly raised the temperature to above the lower critical solution temperature (LCST), which led to an obvious increase of surface COF owing to the destruction of the hydration layer. In addition, M–DN friction control hydrogel showed good recyclability and controllability by tuning "on-off" of the NIR light. This work highlights the construction of functional MXene hydrogels for intelligent lubrication, which provides insight for interface sensing, controlled transmission, and flexible robotic arms.

Open Access Research Article Issue
Synovial fluid-inspired biomimetic lubricating microspheres: Zwitterionic polyelectrolyte brushes-grafted microgels
Friction 2023, 11(6): 938-948
Published: 15 August 2022
Abstract PDF (3.2 MB) Collect
Downloads:37

Synovial fluid is made up of various biomacromolecules, including hyaluronic acid, aggrecans, lubricins, and phosphatidylcholine lipid, which are assembled onto the surface of articular cartilage in a gel state. Among them, brush-like biomacromolecules or assemblies have a vital effect on human joint lubrication. Inspired by this, the combination of brush-like molecular structures and gel-like assembly may be an efficient approach for the synthesis of biomimetic lubricating matters. Learning from the lubrication system of human joints, poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) brushes grafted poly(N-isopropylacrylamide-co-acrylic acid) (poly(NIPAAm-co-AA)) microgels, abbreviated as MBs-g-MGs, were synthesized as one kind of biomimetic lubricating additives. It is worth noting that this bionic strategy considered both molecular structure and assembled form, which enabled this hairy microgel to achieve low friction in aqueous medium. Meanwhile, the effective lubrication was still achieved when using MBs-g-MGs at high temperature, indicating that this microgel maintains a good lubricating effect over a wide range of temperature. In addition, this kind of microgel possessed good biocompatibility, which laid the foundation for potential biomedical applications. Looking beyond, these biomimetic microgels may provide an effective lubricating effect for water-based sliding interfaces, especially in biomedical systems.

Total 4