A suitable interface between the electrode and electrolyte is crucial in achieving highly stable electrochemical performance for Li-ion batteries, as facile ionic transport is required. Intriguing research and development have recently been conducted to form a stable interface between the electrode and electrolyte. Therefore, it is essential to investigate emerging knowledge and contextualize it. The nanoengineering of the electrode-electrolyte interface has been actively researched at the electrode/electrolyte and interphase levels. This review presents and summarizes some recent advances aimed at nanoengineering approaches to build a more stable electrode-electrolyte interface and assess the impact of each approach adopted. Furthermore, future perspectives on the feasibility and practicality of each approach will also be reviewed in detail. Finally, this review aids in projecting a more sustainable research pathway for a nanoengineered interphase design between electrode and electrolyte, which is pivotal for high-performance, thermally stable Li-ion batteries.
- Article type
- Year
- Co-author

Heavy metal pollution is a key environmental problem. Selectively extracting heavy metals could accomplish water purification and resource recycling simultaneously. Adsorption is a promising approach with a facile process, adaptability for the broad concentration of feed water, and high selectivity. However, the adsorption method faces challenges in synthesizing high-performance sorbents and regenerating adsorbents effectively. FeOOH is an environmentally friendly sorbent with low-cost production on a large scale. Nevertheless, the selectivity behavior and regeneration of FeOOH are seldom studied. Therefore, we investigated the selectivity of FeOOH in a mixed solution of Co2+, Ni2+, and Pb2+ and proposed to enhance the capacity of FeOOH and regenerate it by using external charges. Without charge, the FeOOH electrode shows a Pb2+ uptake capacity of 20 mg/g. After applying a voltage of −0.2/+0.8 V, the uptake capacity increases to a maximum of 42 mg/g and the desorption ratio is 70%–80%. In 35 cycles, FeOOH shows a superior selectivity towards Pb2+ compared with Co2+ and Ni2+, with a purity of 97% ± 3% in the extracts. The high selectivity is attributed to the lower activation energy for Pb2+ sorption. The capacity retentions at the 5th and the 35th cycles are ca. 80% and ca. 50%, respectively, comparable to the chemical regeneration method. With industrially exhausted granular ferric hydroxide as the electrode material, the system exhibits a Pb2+ uptake capacity of 37.4 mg/g with high selectivity. Our work demonstrates the feasibility of regenerating FeOOH by charge and provides a new approach for recycling and upcycling FeOOH sorbent.