Sort:
Regular Paper Issue
SMRI: A New Method for siRNA Design for COVID-19 Therapy
Journal of Computer Science and Technology 2022, 37(4): 991-1002
Published: 25 July 2022
Abstract Collect

First discovered in Wuhan, China, SARS-CoV-2 is a highly pathogenic novel coronavirus, which rapidly spread globally and became a pandemic with no vaccine and limited distinctive clinical drugs available till March 13th, 2020. Ribonucleic Acid interference (RNAi) technology, a gene-silencing technology that targets mRNA, can cause damage to RNA viruses effectively. Here, we report a new efficient small interfering RNA (siRNA) design method named Simple Multiple Rules Intelligent Method (SMRI) to propose a new solution of the treatment of COVID-19. To be specific, this study proposes a new model named Base Preference and Thermodynamic Characteristic model (BPTC model) indicating the siRNA silencing efficiency and a new index named siRNA Extended Rules index (SER index) based on the BPTC model to screen high-efficiency siRNAs and filter out the siRNAs that are difficult to take effect or synthesize as a part of the SMRI method, which is more robust and efficient than the traditional statistical indicators under the same circumstances. Besides, to silence the spike protein of SARS-CoV-2 to invade cells, this study further puts forward the SMRI method to search candidate high-efficiency siRNAs on SARS-CoV-2's S gene. This study is one of the early studies applying RNAi therapy to the COVID-19 treatment. According to the analysis, the average value of predicted interference efficiency of the candidate siRNAs designed by the SMRI method is comparable to that of the mainstream siRNA design algorithms. Moreover, the SMRI method ensures that the designed siRNAs have more than three base mismatches with human genes, thus avoiding silencing normal human genes. This is not considered by other mainstream methods, thereby the five candidate high-efficiency siRNAs which are easy to take effect or synthesize and much safer for human body are obtained by our SMRI method, which provide a new safer, small dosage and long efficacy solution for the treatment of COVID-19.

Regular Paper Issue
GAEBic: A Novel Biclustering Analysis Method for miRNA-Targeted Gene Data Based on Graph Autoencoder
Journal of Computer Science and Technology 2021, 36(2): 299-309
Published: 05 March 2021
Abstract Collect

Unlike traditional clustering analysis, the biclustering algorithm works simultaneously on two dimensions of samples (row) and variables (column). In recent years, biclustering methods have been developed rapidly and widely applied in biological data analysis, text clustering, recommendation system and other fields. The traditional clustering algorithms cannot be well adapted to process high-dimensional data and/or large-scale data. At present, most of the biclustering algorithms are designed for the differentially expressed big biological data. However, there is little discussion on binary data clustering mining such as miRNA-targeted gene data. Here, we propose a novel biclustering method for miRNA-targeted gene data based on graph autoencoder named as GAEBic. GAEBic applies graph autoencoder to capture the similarity of sample sets or variable sets, and takes a new irregular clustering strategy to mine biclusters with excellent generalization. Based on the miRNA-targeted gene data of soybean, we benchmark several different types of the biclustering algorithm, and find that GAEBic performs better than Bimax, Bibit and the Spectral Biclustering algorithm in terms of target gene enrichment. This biclustering method achieves comparable performance on the high throughput miRNA data of soybean and it can also be used for other species.

Total 2