Sort:
Open Access Research Article Issue
Biphasic (Lu,Gd)3Al5O12-based transparent nanoceramic color converters for high-power white LED/LD lighting
Journal of Advanced Ceramics 2023, 12 (12): 2331-2344
Published: 04 January 2024
Downloads:167

Ce doped Lu3Al5O12 (Ce:LuAG) transparent ceramics are considered as promising color converters for solid-state lighting because of their excellent luminous efficiency, high thermal quenching temperature, and good thermal stability. However, Ce:LuAG ceramics mainly emit green light. The shortage of red light as well as the expensive price of Lu compounds are hindering their application for white lighting. In this work, transparent (Lu,Gd)3Al5O12–Al2O3 (LuGAG–Al2O3) nanoceramics with different replacing contents of Gd3+ (10%–50%) were successfully elaborated via a glass-crystallization method. The obtained ceramics with full nanoscale grains are composed of the main LuGAG crystalline phase and secondary Al2O3 phase, exhibiting eminent transparency of 81.0%@780 nm. After doping by Ce3+, the Ce:LuGAG–Al2O3 nanoceramics show a significant red shift (510 nm→550 nm) and make up for the deficiency of red light component in the emission spectrum. The Ce:LuAG–Al2O3 nanoceramics with 20% Gd3+ show high internal quantum efficiency (81.5% in internal quantum efficiency (IQE), 96.7% of Ce:LuAG–Al2O3 nanoceramics) and good thermal stability (only 9% loss in IQE at 150 ℃). When combined with blue LED chips (10 W), 0.3%Ce:LuGAG–Al2O3 nanoceramics with 20% Gd3+ successfully realize the high-quality warm white LED lighting with a color coordinate of (0.3566, 0.435), a color temperature of 4347 K, CRI of 67.7, and a luminous efficiency of 175.8 lm·W−1. When the transparent 0.3%Ce:LuGAG–Al2O3 nanoceramics are excited by blue laser (5 W·mm2), the emission peak position redshifts from 517 to 570 nm, the emitted light exhibits a continuous change from green light to yellow light, and then to orange-yellow light, and the maximum luminous efficiency is up to 234.49 lm·W−1 (20% Gd3+). Taking into account the high quantum efficiency, good thermal stability, and excellent and adjustable luminous properties, the transparent Ce:LuGAG–Al2O3 nanoceramics with different Gd3+ substitution contents in this paper are believed to be promising candidates for high-power white LED/LD lighting.

Open Access Research Article Issue
Ce3+:Lu3Al5O12–Al2O3 optical nanoceramic scintillators elaborated via a low-temperature glass crystallization route
Journal of Advanced Ceramics 2023, 12 (2): 268-278
Published: 29 December 2022
Downloads:329

Transparent Ce:lutetium aluminum garnet (Ce:Lu3Al5O12, Ce:LuAG) ceramics have been regarded as potential scintillator materials due to their relatively high density and atomic number (Zeff). However, the current Ce:LuAG ceramics exhibit a light yield much lower than the expected theoretical value due to the inevitable presence of LuAl antisite defects at high sintering temperatures. This work demonstrates a low-temperature (1100 ℃) synthetic strategy for elaborating transparent LuAG–Al2O3 nanoceramics through the crystallization of 72 mol% Al2O3–28 mol% Lu2O3 (ALu28) bulk glass. The biphasic nanostructure composed of LuAG and Al2O3 nanocrystals makes up the whole ceramic materials. Most of Al2O3 is distributed among LuAG grains, and the rest is present inside the LuAG grains. Fully dense biphasic LuAG–Al2O3 nanoceramics are highly transparent from the visible region to mid-infrared (MIR) region, and particularly the transmittance reaches 82% at 780 nm. Moreover, LuAl antisite defect-related centers are completely undetectable in X-ray excited luminescence (XEL) spectra of Ce:LuAG–Al2O3 nanoceramics with 0.3–1.0 at% Ce. The light yield of 0.3 at% Ce:LuAG–Al2O3 nanoceramics is estimated to be 20,000 ph/MeV with short 1 μs shaping time, which is far superior to that of commercial Bi4Ge3O12 (BGO) single crystals. These results show that a low-temperature glass crystallization route provides an alternative approach for eliminating the antisite defects in LuAG-based ceramics, and is promising to produce garnet-based ceramic materials with excellent properties, thereby meeting the demands of advanced scintillation applications.

total 2