Sort:
Open Access Research Article Issue
Multimodal biofeedback for Parkinson’s disease motor and nonmotor symptoms
Brain Science Advances 2023, 9 (2): 136-154
Published: 05 June 2023
Downloads:85

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by motor retardation, myotonia, quiescent tremor, and postural gait abnormality, as well as nonmotor symptoms such as anxiety and depression. Biofeedback improves motor and nonmotor functions of patients by regulating abnormal electroencephalogram (EEG), electrocardiogram (ECG), photoplethysmography (PPG), electromyography (EMG), respiration (RSP), or other physiological signals. Given that multimodal signals are closely related to PD states, the clinical effect of multimodal biofeedback on patients with PD is worth exploring. Twenty-one patients with PD in Beijing Rehabilitation Hospital were enrolled and divided into three groups: multimodal (EEG, ECG, PPG, and RSP feedback signal), EEG (EEG feedback signal), and sham (random feedback signal), and they received biofeedback training five times in two weeks. The combined clinical scale and multimodal signal analysis results revealed that the EEG group significantly improved motor symptoms and increased Berg balance scale scores by regulating β band activity; the multimodal group significantly improved nonmotor symptoms and reduced Hamilton rating scale for depression scores by improving θ band activity. Our preliminary results revealed that multimodal biofeedback can improve the clinical symptoms of PD, but the regulation effect on motor symptoms is weaker than that of EEG biofeedback.

Open Access Review Article Issue
Review of brain–computer interface based on steady-state visual evoked potential
Brain Science Advances 2022, 8 (4): 258-275
Published: 30 November 2022
Downloads:44

The brain–computer interface (BCI) technology has received lots of attention in the field of scientific research because it can help disabled people improve their quality of life. Steady-state visual evoked potential (SSVEP) is the most researched BCI experimental paradigm, which offers the advantages of high signal-to-noise ratio and short training-time requirement by users. In a complete BCI system, the two most critical components are the experimental paradigm and decoding algorithm. However, a systematic combination of the SSVEP experimental paradigm and decoding algorithms is missing in existing studies. In the present study, the transient visual evoked potential, SSVEP, and various improved SSVEP paradigms are compared and analyzed, and the problems and development bottlenecks in the experimental paradigm are finally pointed out. Subsequently, the canonical correlation analysis and various improved decoding algorithms are introduced, and the opportunities and challenges of the SSVEP decoding algorithm are discussed.

total 2