Sort:
Open Access Research Article Issue
Improved damage tolerance and oxidation resistance of (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2–SiC by introducing chopped carbon fibers
Journal of Advanced Ceramics 2024, 13 (1): 101-112
Published: 24 January 2024
Downloads:256

High-entropy diborides (HEBs) are considered as promising high-temperature structure materials owing to their high melting point and excellent thermal stability. However, the intrinsic brittleness is the main obstacle that seriously limits their practical applications. To overcome with this obstacle, carbon fibers (Cf) with outstanding mechanical properties are used in the present work as a first attempt to improve the damage tolerance of HEBs. The as-prepared Cf/(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2–SiC composite (Cf/HEB–SiC) shows high relative density (97.9%) and good mechanical properties with flexural strength of 411±3 MPa and fracture toughness of 6.15±0.11 MPa·m1/2. More importantly, the damage tolerance parameter (Dt) has increased from 0.10 m1/2 for HEB–SiC to 0.29 m1/2 for Cf/HEB–SiC. Through microstructural analysis and Vickers indentation of the composite, the toughening mechanisms are disclosed. The carbon fibers coated with carbon coatings demonstrate unique capacity for prolonging the crack propagation path, which promotes the reliability of the composite effectively. Moreover, the Cf/(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2–SiC composite also exhibits good static oxidation resistance in the temperature range of 1100–1500 ℃ in air due to the formation of the protective oxide layer constituting of multicomponent oxides (Zr)HfTiO4 and (Zr)Hf6Ta2O17 embedded in a continuous SiO2 glass. These results are promising, and this primary work can be used as a reference to the synthesis of Cf/HEBs for thermal protection materials under high-temperature serving conditions.

Open Access Research Article Issue
Air plasma-sprayed high-entropy (Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12 coating with high thermal protection performance
Journal of Advanced Ceramics 2022, 11 (10): 1571-1582
Published: 11 October 2022
Downloads:168

High-entropy rare-earth aluminate (Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12 (HE-RE3Al5O12) has been considered as a promising thermal protection coating (TPC) material based on its low thermal conductivity and close thermal expansion coefficient to that of Al2O3. However, such a coating has not been experimentally prepared, and its thermal protection performance has not been evaluated. To prove the feasibility of utilizing HE-RE3Al5O12 as a TPC, HE-RE3Al5O12 coating was deposited on a nickel-based superalloy for the first time using the atmospheric plasma spraying technique. The stability, surface, and cross-sectional morphologies, as well as the fracture surface of the HE-RE3Al5O12 coating were investigated, and the thermal shock resistance was evaluated using the oxyacetylene flame test. The results show that the HE-RE3Al5O12 coating can remain intact after 50 cycles at 1200 ℃ for 200 s, while the edge peeling phenomenon occurs after 10 cycles at 1400 ℃ for 200 s. This study clearly demonstrates that HE-RE3Al5O12 coating is effective for protecting the nickel-based superalloy, and the atmospheric plasma spraying is a suitable method for preparing this kind of coatings.

total 2