Sort:
Open Access Issue
FingerDTA: A Fingerprint-Embedding Framework for Drug-Target Binding Affinity Prediction
Big Data Mining and Analytics 2023, 6 (1): 1-10
Published: 24 November 2022
Abstract PDF (1.7 MB) Collect
Downloads:296

Many efforts have been exerted toward screening potential drugs for targets, and conducting wet experiments remains a laborious and time-consuming approach. Artificial intelligence methods, such as Convolutional Neural Network (CNN), are widely used to facilitate new drug discovery. Owing to the structural limitations of CNN, features extracted from this method are local patterns that lack global information. However, global information extracted from the whole sequence and local patterns extracted from the special domain can influence the drug-target affinity. A fusion of global information and local patterns can construct neural network calculations closer to actual biological processes. This paper proposes a Fingerprint-embedding framework for Drug-Target binding Affinity prediction (FingerDTA), which uses CNN to extract local patterns and utilize fingerprints to characterize global information. These fingerprints are generated on the basis of the whole sequence of drugs or targets. Furthermore, FingerDTA achieves comparable performance on Davis and KIBA data sets. In the case study of screening potential drugs for the spike protein of the coronavirus disease 2019 (COVID-19), 7 of the top 10 drugs have been confirmed potential by literature. Ultimately, the docking experiment demonstrates that FingerDTA can find novel drug candidates for targets. All codes are available at http://lanproxy.biodwhu.cn:9099/mszjaas/FingerDTA.git.

Regular Paper Issue
CytoBrain: Cervical Cancer Screening System Based on Deep Learning Technology
Journal of Computer Science and Technology 2021, 36 (2): 347-360
Published: 05 March 2021
Abstract Collect

Identification of abnormal cervical cells is a significant problem in computer-aided diagnosis of cervical cancer. In this study, we develop an artificial intelligence (AI) system, named CytoBrain, to automatically screen abnormal cervical cells to help facilitate the subsequent clinical diagnosis of the subjects. The system consists of three main modules: 1) the cervical cell segmentation module which is responsible for efficiently extracting cell images in a whole slide image (WSI); 2) the cell classification module based on a compact visual geometry group (VGG) network called CompactVGG which is the key part of the system and is used for building the cell classiffier; 3) the visualized human-aided diagnosis module which can automatically diagnose a WSI based on the classification results of cells in it, and provide two visual display modes for users to review and modify. For model construction and validation, we have developed a dataset containing 198 952 cervical cell images (60 238 positive, 25 001 negative, and 113 713 junk) from samples of 2 312 adult women. Since CompactVGG is the key part of CytoBrain, we conduct comparison experiments to evaluate its time and classification performance on our developed dataset and two public datasets separately. The comparison results with VGG11, the most efficient one in the family of VGG networks, show that CompactVGG takes less time for either model training or sample testing. Compared with three sophisticated deep learning models, CompactVGG consistently achieves the best classification performance. The results illustrate that the system based on CompactVGG is efficient and effective and can support for large-scale cervical cancer screening.

Total 2