Publications
Sort:
Open Access Research Issue
Effects of forest management on biomass stocks in Romanian beech forests
Forest Ecosystems 2019, 6 (3): 19
Published: 04 April 2019
Downloads:3
Background

Forest management aims at obtaining a sustainable production of wood to be harvested to generate products or energy. However, the quantitative influence of forest management and of removals by harvest on biomass stocks has rarely been analysed on a large scale based on measurements. Two hypotheses prevail: management induces a reduction of wood stocks due to cuttings, versus no impact because of increased growth of the remaining trees.

Using data collected for 2840 permanent plots across Romania from the National Forest Inventory representing ~ 2.5 Mha, we have tested to what extent different management types and treatments can influence the biomass stock and productivity of beech forests, and attempt to quantify these effects both on the short and long terms.

Three main types of beech forest management are implemented in Romania with specific objectives: intensive wood production in production forests, protection of ecosystem services (e.g. watersheds, avalanche protection) in protection forests, and protection of the forest and its biodiversity in protected forests. Production forests encompass two treatments differing according to the stand regeneration method: the age class rotation management and the group shelterwood management.

Results

We show that forest management had little influence on the biomass stocks at a given stand age. The highest stocks at stand age 100 were observed in production forests (the most intensively managed forests). Consequences of early cuttings were very short-termed because the increase in tree growth rapidly compensated for tree cuttings. The cumulated biomass of production forests exceeded that of protected and protection forests. Regarding the treatment, the group shelterwood forests had a markedly higher production over a full rotation period.

The total amount of deadwood was primarily driven by the amount of standing deadwood, and no management effect was detected.

Conclusions

Given the relatively low-intensity management in Romania, forest management had no negative impact on wood stocks in beech forests biomass stocks at large scale. Stand productivity was very similar among management types or treatments. However cumulated biomass in production forests was higher than in protection or protected forests, and differed markedly according to treatments with a higher cumulated biomass in shelterwood forests.

Open Access Research Issue
Romanian legal management rules limit wood production in Norway spruce and beech forests
Forest Ecosystems 2017, 4 (1): 20
Published: 02 September 2016
Downloads:3
Background

The quantitative impact of forest management on forests' wood resource was evaluated for Picea and Fagus mixed forests. The effects on the productivity of tendering operations, thinnings and rotation length have seldom been directly quantified on landscape scale.

Methods

Two sites of similar fertility but subject to contrasted forest management were studied with detailed inventories: one in Germany, the other in Romania, and compared with the respective national forest inventories. In Romania, regulations impose very long rotations, low thinnings and a period of no-cut before harvest. In contrast, tending and thinnings are frequent and intense in Germany. Harvests start much earlier and must avoid clear cutting but maintain a permanent forest cover with natural regeneration. While Germany has an average annual wood increment representative for Central Europe, Romania represents the average for Eastern Europe.

Results

The lack of tending and thinning in the Romanian site resulted in twice as many trees per hectare as in the German site for the same age. The productivity in Romanian production forests was 20 % lower than in Germany despite a similar fertility. The results were supported by the data from the national forest inventory of each country, which confirmed that the same differential exists at country scale. Furthermore, provided the difference in rotation length, two crops are harvested in Germany when only one is harvested in Romania. The losses of production due to a lower level of management in Romania where estimated to reach 12.8 million m3.y-1 in regular mountain production forests, and to 15 million m3.y-1 if managed protection forest is included.

Conclusions

The productivity of Picea and Fagus mountain forests in Romania is severely depressed by the lack of tending and thinning, by overly long rotations and the existence of a 25-years no-cut period prior to harvest. The average standing volume in Germany was 50 % lower than in Romania, but the higher harvesting rate resulted in more than doubling wood production. Considering the mitigation effects of climate change by forests, it emerges that the increase in standing volume of forests in Romania is smaller than the additional harvest in Germany which serves fossil fuel substitution.

total 2