Publications
Sort:
Research Article Issue
High current CO2 reduction realized by edge/defect-rich bismuth nanosheets
Nano Research 2023, 16 (1): 53-61
Published: 17 August 2022
Downloads:101

CO2 electroreduction has been regarded as an appealing strategy for renewable energy storage. Recently, bismuth (Bi) electrocatalysts have attracted much attention due to their excellent formate selectivity. However, many reported Bi electrocatalysts suffer from low current densities, which are insufficient for industrial applications. To reach the goal of high current CO2 reduction to formate, we fabricate Bi nanosheets (NS) with high activity through edge/terrace control and defect engineering strategy. Bi NS with preferential exposure sites are obtained by topotactic transformation, and the processes are clearly monitored by in-situ Raman and ex-situ X-ray diffraction (XRD). Bi NS-1 with a high fraction of edge sites and defect sites exhibits excellent performance, and the current density is up to ca. 870 mA·cm−2 in the flow cell, far above the industrially applicable level (100 mA·cm−2), with a formate Faradaic efficiency greater than 90%. In-situ Fourier transform infrared (FT-IR) spectra detect *OCHO, and theoretical calculations reveal that the formation energy of *OCHO on edges is lower than that on terraces, while the defects on edges further reduce the free energy changes (ΔG). The differential charge density spatial distributions reveal that the presence of defects on edges causes charge enrichment around the C–H bond, benefiting the stabilization of the *OCHO intermediate, thus remarkably lowering the ΔG.

total 1