Sort:
Erratum Issue
Erratum to: Dynamic ocean inverse modeling based on differentiable rendering
Computational Visual Media 2024, 10 (3): 609
Published: 22 March 2024
PDF (2.4 MB) Collect
Downloads:111
Open Access Research Article Issue
Dynamic ocean inverse modeling based on differentiable rendering
Computational Visual Media 2024, 10 (2): 279-294
Published: 03 January 2024
Abstract PDF (10.9 MB) Collect
Downloads:28

Learning and inferring underlying motion patterns of captured 2D scenes and then re-creating dynamic evolution consistent with the real-world natural phenomena have high appeal for graphics and animation. To bridge the technical gap between virtual and real environments, we focus on the inverse modeling and reconstruction of visually consistent and property-verifiable oceans, taking advantage of deep learning and differentiable physics to learn geometry and constitute waves in a self-supervised manner. First, we infer hierarchical geometry using two networks, which are optimized via the differentiable renderer. We extract wave components from the sequence of inferred geometry through a network equipped with a differentiable ocean model. Then, ocean dynamics can be evolved using the reconstructed wave components. Through extensive experiments, we verify that our new method yields satisfactory results for both geometry reconstruction and wave estimation. Moreover, the new framework has the inverse modeling potential to facilitate a host of graphics applications, such as the rapid production of physically accurate scene animation and editing guided by real ocean scenes.

Open Access Issue
Real-Time Laparoscopic Cholecystectomy Simulation Using a Particle-Based Physical System
Complex System Modeling and Simulation 2022, 2 (2): 186-196
Published: 30 June 2022
Abstract PDF (8.7 MB) Collect
Downloads:161

Laparoscopic cholecystectomy is used to treat cholecystitis and cholelithiasis. Because the high risk of the surgery prevents novice doctors from practicing it on real patients, VR-based surgical simulation has been developed to simulate surgical procedures to train surgeons without patients, cadavers, or animals. In this study, we propose a real-time system designed to provide plausible visual and tactile simulation of the main surgical procedures. To achieve this, the physical properties of organs are modeled by particles, and cluster-based shape matching is used to simulate soft deformation. The haptic interaction between tools and soft tissue is modeled as a collision between a capsule and particles. Constraint-based haptic rendering is used to generate feedback force and the non-penetrating position of the virtual tool. The proposed system can simulate the major steps of laparoscopic cholecystectomy, such as the anatomy of Calot’s triangle, clipping of the cystic duct and biliary artery, disjunction of the cystic duct and biliary artery, and separation of the gallbladder bed. The experimental results show that haptic rendering can be performed at a high frequency (> 900 Hz), whereas mesh skinning and graphics rendering can be performed at 60 frames per second (fps).

Total 3