Sort:
Research Article Issue
MoC nanocrystals confined in N-doped carbon nanosheets toward highly selective electrocatalytic nitric oxide reduction to ammonia
Nano Research 2022, 15 (10): 8890-8896
Published: 18 August 2022
Downloads:98

Electrochemical nitric oxide reduction reaction (NORR) to produce ammonia (NH3) under ambient conditions is a promising alternative to the energy and carbon-intensive Haber–Bosch approach, but its performance is still improved. Herein, molybdenum carbides (MoC) nanocrystals confined by nitrogen-doped carbon nanosheets are first designed as an efficient and durable electrocatalyst for catalyzing the reduction of NO to NH3 with maximal Faradaic efficiency of 89% ± 2% and a yield rate of 1,350 ± 15 μg·h−1·cm−2 at the applied potential of −0.8 V vs. reversible hydrogen electrode (RHE) as well as high stable activity with negligible current density and NH3 yield rate decays over a 30 h continue the test. Moreover, as a proof-of-concept of Zn–NO battery, it achieves a peak power density of 1.8 mW·cm−2 and a large NH3 yield rate of 782 ± 10 μg·h−1·cm−2, which are comparable to the best-reported results. Theoretical calculations reveal that the MoC(111) has a strong electronic interaction with NO molecules and thus lowering the energy barrier of the potential-determining step and suppressing hydrogen evolution kinetics. This work suggests that Mo-based materials are a powerful platform providing great opportunities to explore highly selective and active catalysts for NH3 production.

total 1