Sort:
Open Access Research Article Issue
EFECL: Feature encoding enhancement with contrastive learning for indoor 3D object detection
Computational Visual Media 2023, 9 (4): 875-892
Published: 03 August 2023
Downloads:6

Good proposal initials are critical for 3D object detection applications. However, due to the significant geometry variation of indoor scenes, incomplete and noisy proposals are inevitable in most cases. Mining feature information among these "bad" proposals may mislead the detection. Contrastive learning provides a feasible way for representing proposals, which can align complete and incomplete/noisy proposals in feature space. The aligned feature space can help us build robust 3D representation even if bad proposals are given. Therefore, we devise a new contrast learning framework for indoor 3D object detection, called EFECL, that learns robust 3D representations by contrastive learning of proposals on two different levels. Specifically, we optimize both instance-level and category-level contrasts to align features by capturing instance-specific characteristics and semantic-aware common patterns. Furthermore, we propose an enhanced feature aggregation module to extract more general and informative features for contrastive learning. Evaluations on ScanNet V2 and SUN RGB-D benchmarks demonstrate the generalizability and effectiveness of our method, and our method can achieve 12.3% and 7.3% improvements on both datasets over the benchmark alternatives. The code and models are publicly available at https://github.com/YaraDuan/EFECL.

Open Access Research Article Issue
ARM3D: Attention-based relation module for indoor 3D object detection
Computational Visual Media 2022, 8 (3): 395-414
Published: 08 March 2022
Downloads:35

Relation contexts have been proved to be useful for many challenging vision tasks. In the field of 3D object detection, previous methods have been taking the advantage of context encoding, graph embedding, orexplicit relation reasoning to extract relation contexts. However, there exist inevitably redundant relation contexts due to noisy or low-quality proposals. In fact, invalid relation contexts usually indicate underlying scene misunderstanding and ambiguity, which may, on the contrary, reduce the performance in complex scenes. Inspired by recent attention mechanism like Transformer, we propose a novel 3D attention-based relation module (ARM3D). It encompasses object-aware relation reasoning to extract pair-wise relation contexts among qualified proposals and an attention module to distribute attention weights towards different relation contexts. In this way, ARM3D can take full advantage of the useful relation contexts and filter those less relevant or even confusing contexts, which mitigates the ambiguity in detection. We have evaluated the effectiveness of ARM3D by plugging it into several state-of-the-art 3D object detectors and showing more accurate and robust detection results. Extensive experiments show the capability and generalization of ARM3D on 3D object detection. Our source code is available at https://github.com/lanlan96/ARM3D.

total 2