Publications
Sort:
Open Access Research Article Issue
Ultralight and superelastic MXene/reduced graphene oxide aerogels for electromagnetic interference shielding
Nano Research 2025, 18(1): 94907009
Published: 23 December 2024
Abstract PDF (19.3 MB) Collect
Downloads:223

Lightweight aerogels feature multifunctionality and a high porosity, yet accompanied with poor structure recovery under large strain deformations. In this work, we develop an air bubble-ice crystal dual template and annealing strategy to integrate low density and high resilience for the conductive transition metal carbides/nitrides (MXene) composite aerogels. The air bubbles and ice crystals synergistically exclude the nanosheets to the gas-liquid interfaces, thereby constructing unique Y-shaped junctions and robust skeleton. Subsequent annealing process greatly enhances the interlayer interactions. Under external load, the Y-shaped structures prevent the stress concentration at the junctions by transferring the forces to the skeleton for maintaining structural stability. In addition, the wrinkled and thick cell walls, together with the enhanced interlayer interactions, endow the aerogel with exceptional structural stability and resilience. As a result, the MXene/reduced graphene oxide (RGO) composite aerogels exhibit superelasticity with reversible compressive strains of up to 95%. In addition, the electron bridging effect of the RGO sheets affords the aerogel to deliver excellent electromagnetic interference shielding performance, as high as 46.3 dB at 2.5 mm. Furthermore, the remarkable reshapeability of the aerogels allows for precise regulation of structure and performance (33.5–75.1 dB) by a simple wetting compression process. In summary, this work offers helpful inspirations for developing lightweight and superelasticity aerogels for extensive applications.

Research Article Issue
Strong and conductive reduced graphene oxide-MXene porous films for efficient electromagnetic interference shielding
Nano Research 2022, 15(6): 4916-4924
Published: 31 March 2022
Abstract PDF (5.5 MB) Collect
Downloads:139

Lightweight, flexible, and electrically conductive porous films are promising for efficient electromagnetic interference (EMI) shielding. However, the mechanical and electrical properties of porous films are far from optimum. Herein, we fabricate mechanically flexible and electrically conductive reduced graphene oxide (rGO)-Ti3C2Tx MXene (rG-M) porous films with optimized continuous cellular morphology by a controlled hydrazine foaming process. The presence of MXene prevents excessive expansion of the rG-M film, improves the electron conduction paths, and enhances the mechanical properties. The resultant rG-M porous film has superior mechanical and electric performances compared to its rGO counterpart, giving one of the highest tensile strengths (24.5 MPa) among the porous films, a high electrical conductivity of 74.4 S·cm−1, and an excellent broadband EMI shielding from 8 to 26.5 GHz. A high EMI shielding effectiveness of 52.6 dB is achieved for the porous film by adjusting its thickness and treatment procedure, providing a feasible fabrication route for lightweight and high-performance EMI shielding materials.

Total 2