Sort:
Open Access Research Issue
Abundance of insects and aerial insectivorous birds in relation to pesticide and fertilizer use
Avian Research 2021, 12 (1): 43
Published: 04 September 2021
Downloads:16
Background

The abundance of insects has decreased considerably during recent decades, resulting in current abundance showing 70–80% reductions in more than 15 studies across temperate climate zones. Dramatic reductions in the abundance of insects are likely to have consequences for other taxa at higher trophic levels such as predators and parasites. Pesticides, fertilizers and agricultural land use are likely candidates accounting for such reductions in the abundance of insects.

Methods

Here we surveyed the abundance of flying insects, and the reduction in the abundance of insects as a consequence of intensive reduction in agricultural practice linked to fertilizer use and pesticide use. Finally we demonstrated consistency in abundance of birds among study sites.

Results

We demonstrated that the use of fertilizers and pesticides had reduced the abundance of insects, with consequences for the abundance of insectivorous bird species such as Barn Swallows (Hirundo rustica), House Martins (Delichon urbicum) and Swifts (Apus apus). Juvenile Barn Swallows were negatively affected by the reduced abundance of insects and hence the reproductive success of insectivorous bird species. These effects imply that the abundance of insects could be reduced by the availability of insect food.

Conclusions

These effects of intensive agriculture on insect food abundance are likely to have negative impacts on populations of insects and their avian predators. This hypothesis was validated by a reduction in the abundance of insects, linked to an increase in the abundance of fertilizers and a general change in farming practice.

Open Access Research Issue
Extra-pair paternity and antiparasitic defence
Avian Research 2020, 11 (1): 37
Published: 14 October 2020
Downloads:8
Background

Extra-pair paternity (EPP) in birds provides benefits in terms of more offspring, and characteristics for maintenance of this behaviour have been the subject of investigation. Microorganisms are known to be transmitted during mating, especially when mating with multiple partners, and factors reducing this cost of multiple mating are expected. Further, plumage brightness and colour intensity have been shown to be important traits to benefits from multiple mating as predicted by sexual selection. The aim of this study was to investigate the relationship between the rate of extra-pair paternity and the relative size of the uropygial gland at the interspecific level, as the uropygial gland is an exocrine gland hypothesized to produce antiparasitic substances and further identified to affect plumage brightness. Because of the expected benefits of large uropygial gland in scenarios of sexual selection, we predicted a positive correlation with EPP.

Methods

We collected information from the literature of uropygial gland size and frequency of extra-pair paternity of 60 avian species of different families and explored the predicted positive correlation between them. We did so with means of comparative analyses that considered phylogenetic relationship as random factor and included body mass as covariate. We used Markov chain Monte Carlo generalized linear mixed models that were weighted by number of nests used to estimate extra-pair paternity.

Results

We detected a positive relationship between level of extra-pair paternity and uropygial gland size at an interspecific level. This finding is consistent with the prediction.

Conclusions

We discuss the importance of this result in scenarios of sexual selection and argue that the detected relationship may have arisen by utilizing antiparasitic secretions through secondary sexual characters indicating parasite resistance.

Open Access Research Issue
Function of the uropygial gland in eiders (Somateria mollissima)
Avian Research 2019, 10 (1): 24
Published: 05 July 2019
Downloads:8
Background

The uropygial gland is an exocrine gland located above the tail of birds that produces a diverse range of biochemicals. It has been hypothesized to be involved in chemical protection, water-proofing and maintenance of plumage brightness. Although these not necessarily mutually exclusive functions have received some empirical support, there has been little empirical research on the function of water-proofing.

Methods

Here we analyzed data for 229 individual eiders (Somateria mollissima) collected by Danish hunters during 2016?2018.

Results

The Eider is a sea-duck that spends almost its entire life in sea water emphasizing water-proofing of the plumage. The size of the uropygial gland increased with body mass in males, but not in females, and it increased with age. The size of the uropygial gland decreased during winter. Eiders with small uropygial glands grew their feathers at a fast rate. Eiders with large wing areas had large uropygial glands.

Conclusions

These findings are consistent with large uropygial glands playing a role in water-proofing during molt and foraging, but also that uropygial glands may play a role in chemical defense.

Open Access Research Issue
Long-lived birds suffer less from oxidative stress
Avian Research 2018, 9 (1): 41
Published: 06 December 2018
Downloads:21
Background

Oxidative stress, caused by an imbalance between reactive oxygen species and antioxidants, is thought to be an important intrinsic mechanism for aging. Ecologists have tested this hypothesis in birds, although the evidence supporting the link between oxidative stress and lifespan has so far been ambiguous. Two previous studies based on a wide range of different free-living bird species provided contradictory findings: antioxidants were negatively associated with survival rate in one study, but positively associated with longevity in another.

Methods

In this study, we identified possible shortcomings in previous research, and then used the comparative methods to test whether long-lived birds experience less oxidative stress reflected by four blood redox state markers (total antioxidant status, uric acid, total glutathione, malondialdehyde) based on data for 78 free-living species.

Results

Relatively long-lived bird species had high levels of antioxidants (total antioxidant status, total glutathione) and low levels of reactive oxygen species (malondialdehyde). These associations were independent of statistical control for any effects of body mass, sampling effort and similarity among taxa due to common phylogenetic descent.

Conclusions

The direction of these associations is consistent with the oxidative stress theory of aging.

Open Access Research Issue
Fashion and out of fashion: appearance and disappearance of a novel nest building innovation
Avian Research 2017, 8 (1): 14
Published: 29 June 2017
Downloads:16
Background

Nests are composed of and built with different materials that are handled in specific ways. These mate? rials must initially have been used de novo before commonly being incorporated into nests. Plastic and plastic bags were invented in the 1950s, and they are widely distributed in the environment. Birds started picking up plastic from plastic used to cover farm produce such as silage, potatoes, beets and other crops for use in their nests in the 1960s.

Methods

I recorded the frequency of such plastic use by the Blackbird (Turdus merula) in nests in Denmark, starting in 1966, followed by a peak in use in the 1970s and a subsequent decline.

Results

Nests with plastic were initially built earlier in the season than those without plastic, indicating an associa? tion between innovation and early reproduction. Plastic use was subsequently selected against because nests with plastic suffered from higher rates of predation than nests without plastic, probably because nests with plastic were easier to locate. However, the elevated risk of nest predation only applied to outdoor nests, but not to nests inside buildings, probably because visually searching nest predators such as corvids do not enter buildings.

Conclusions

These findings show that the dynamics of nest material use depend on the benefits of innovation and the fitness costs of nest predation.

Open Access Research Issue
Brain size and urbanization in birds
Avian Research 2015, 6 (1): 8
Published: 15 May 2015
Downloads:16
Background

Brain size may affect the probability of invasion of urban habitats if a relatively larger brain entails superior ability to adapt to novel environments. However, once urbanized urban environments may provide poor quality food that has negative consequences for normal brain development resulting in an excess of individuals with small brains.

Methods

Here we analyze the independent effects of mean, standard deviation and skewness in brain mass for invasion of urban habitats by 108 species of birds using phylogenetic multiple regression analyses weighted by sample size.

Results

There was no significant difference in mean brain mass between urbanized and non-urbanized species or between urban and rural populations of the same species, and mean brain mass was not significantly correlated with time since urbanization. Bird species that became urbanized had a greater standard deviation in brain mass than non-urbanized species, and the standard deviation in brain mass increased with time since urbanization. Brain mass was significantly left skewed in species that remained rural, while there was no significant skew in urbanized species. The degree of left skew was greater in urban than in rural populations of the same species, and successfully urbanized species decreased the degree of left skew with time since urbanization. This is consistent with the hypothesis that sub-optimal brain development was more common in rural habitats resulting in disproportionately many individuals with very small brains.

Conclusions

These findings do not support the hypothesis that large brains promote urbanization, but suggest that skewness has played a role in the initial invasion of urban habitats, and that variance and skew in brain mass have increased as species have become urbanized.

Open Access Research Issue
The allometry of number of feathers in birds changes seasonally
Avian Research 2015, 6 (1): 2
Published: 13 February 2015
Downloads:26
Background

Feathers are a defining feature of birds with multiple functions such as flight, insulation, protection against predation and signaling. Feathers are lost during the annual molt while the rate of such loss at other times of the year and its fitness consequences remain poorly known.

Methods

I used information on the number and the mass of feathers for 160 individuals belonging to 85 species of birds in general linear mixed models to analyze allometry of feathers and to investigate possible factors explaining variation in the number of feathers. A phylogenetic effect was assessed by quantifying the random effect of genus.

Results

The total mass of feathers increased isometrically with body mass, while the total number of feathers and the mean mass of feathers showed negative allometry. Negative allometry implied that small-sized species had relatively many small feathers. There was a negative association between the number of feathers and migration distance. The total number of feathers initially increased during fall and winter, consistent with individuals growing more feathers later during the year or with individuals with fewer feathers selectively disappearing from the population. In contrast, the number of feathers decreased from winter through spring and summer.

Conclusions

These findings suggest that thermoregulation has affected the evolution of the number and the size of feathers, there is selection against feather loss, and that the number of feathers varies across seasons.

total 7