Sort:
Research Article Issue
Enhancing bioactivity and stability of polymer-based material-tissue interface through coupling multiscale interfacial interactions with atomic-thin TiO2 nanosheets
Nano Research 2023, 16 (4): 5247-5255
Published: 05 December 2022
Abstract PDF (9.3 MB) Collect
Downloads:72

Stable and bioactive material–tissue interface (MTF) basically determines the clinical applications of biomaterials in wound healing, sustained drug release, and tissue engineering. Although many inorganic nanomaterials have been widely explored to enhance the stability and bioactivity of polymer-based biomaterials, most are still restricted by their stability and biocompatibility. Here we demonstrate the enhanced bioactivity and stability of polymer-matrix bio-composite through coupling multiscale material–tissue interfacial interactions with atomically thin TiO2 nanosheets. Resin modified with TiO2 nanosheets displays improved mechanical properties, hydrophilicity, and stability. Also, we confirm that this resin can effectively stimulate the adhesion, proliferation, and differentiation into osteogenic and odontogenic lineages of human dental pulp stem cells using in vitro cell–resin interface model. TiO2 nanosheets can also enhance the interaction between demineralized dentinal collagen and resin. Our results suggest an approach to effectively up-regulate the stability and bioactivity of MTFs by designing biocompatible materials at the sub-nanoscale.

Research Article Issue
Exploring electronic-level principles how size reduction enhances nanomaterial surface reactivity through experimental probing and mathematical modeling
Nano Research 2022, 15 (4): 3812-3817
Published: 30 October 2021
Abstract PDF (2.9 MB) Collect
Downloads:96

Size reduction can generally enhance the surface reactivity of inorganic nanomaterials. The origin of this nano-effect has been ascribed to ultrasmall size, large specific surface area, or abundant defects, but the most intrinsic electronic-level principles are still not fully understood yet. By combining experimental explorations and mathematical modeling, herein we propose an electronic-level model to reveal the physicochemical nature of size-dependent nanomaterial surface reactivity. Experimentally, we reveal that competitive redistribution of surface atomic orbitals from extended energy band states into localized surface chemical bonds is the critical electronic process of surface chemical interactions, using H2O2-TiO2 chemisorption as a model reaction. Theoretically, we define a concept, orbital potential (G), to describe the electronic feature determining the tendency of orbital redistribution, and deduce a mathematical model to reveal how size modulates surface reactivity. We expose the dual roles of size reduction in enhancing nanomaterial surface reactivity—inversely correlating to orbital potential and amplifying the effects of other structural factors on surface reactivity.

Total 2