Sort:
Research Article Issue
Femtosecond laser micro-nano processing for boosting bubble releasing of gas evolution reactions
Nano Research 2022, 15 (2): 1672-1679
Published: 16 September 2021
Downloads:62

Coupling effect of chemical composition and physical structure is a key factor to construct superaerophobic electrodes. Almost all reports about superaerophobic electrodes were aimed at precisely controlling morphology of loaded materials (constructing specific structure) and ignored the due role of substrate. Nevertheless, in this work, by using high precision and controllable femtosecond laser, hierarchical micro-nano structures with superaerophobic properties were constructed on the surface of silicon substrate (fs-Si), and such special super-wettability could be successfully inherited to subsequent self-supporting electrodes through chemical synthesis. Femtosecond laser processing endowed electrodes with high electrochemical surface area, strong physical structure, and remarkable superaerophobic efficacy. As an unconventional processing method, the reconstructed morphology of substrate surface bears the responsibility of superaerophobicity, thus liberating the structural constraints on loaded materials. Since this key of coupling effect is transferred from the loaded materials to substrate, we provided a new general scheme for synthesizing superaerophobic electrodes. The successful introduction of femtosecond laser will open a new idea to synthesize self-supporting electrodes for gas-involving reactions.

total 1