Publications
Sort:
Research Article Issue
Nano self-assembly of fluorophosphate cathode induced by surface energy evolution towards high-rate and stable sodium-ion batteries
Nano Research 2023, 16 (1): 439-448
Published: 31 August 2022
Downloads:67

In the field of materials science and engineering, controlling over shape and crystal orientation remains a tremendous challenge. Herein, we realize a nano self-assembly morphology adjustment of Na3V2(PO4)2F3 (NVPF) material, based on surface energy evolution by partially replacing V3+ with aliovalent Mn2+. Crystal growth direction and surface energy evolution, main factors in inducing the nano self-assembly of NVPF with different shapes and sizes, are revealed by high-resolution transmission electron microscope combined with density functional theory. Furthermore, NVPF with a two-dimensional nanosheet structure (NVPF-NS) exhibits the best rate capability with 68 mAh·g−1 of specific capacity at an ultrahigh rate of 20 C and cycle stability with 80.7% of capacity retention over 1,000 cycles at 1 C. More significantly, when matched with Se@reduced graphene oxide (rGO) anode, NVPF-NS//Se@rGO sodium-ion full cells display a remarkable long-term stability with a high capacity retention of 93.8% after 500 cycles at 0.5 C and −25 °C. Consequently, experimental and theoretical calculation results manifest that NVPF-NS demonstrates such superior performances, which can be mainly due to its inherent crystal structure and preferential orientation growth of {001} facets. This work will promise insights into developing novel architectural design strategies for high-performance cathode materials in advanced sodium-ion batteries.

Research Article Issue
Flexible quasi-solid-state sodium-ion full battery with ultralong cycle life, high energy density and high-rate capability
Nano Research 2022, 15 (2): 925-932
Published: 25 June 2021
Downloads:68

Flexible power sources featuring high-performance, prominent flexibility and raised safety have received mounting attention in the area of wearable electronic devices. However, many great challenges remain to be overcome, notably the design and fabrication of flexible electrodes with excellent electrochemical performance and matching them with safe and reliable electrolytes. Herein, a facile approach for preparing flexible electrodes, which employs carbon cloth derived from commercial cotton cloth as the substrate of cathode and a flexible anode, is proposed and investigated. The promising cathode (NVPOF@FCC) with high conductivity and outstanding flexibility is prepared by efficiently coating Na3V2(PO4)2O2F (NVPOF) on flexible carbon cloth (FCC), which exhibits remarkable electrochemical performance and the significantly improved reaction kinetics. More importantly, a novel flexible quasi-solid-state sodium-ion full battery (QSFB) is feasibly assembled by sandwiching a P(VDF-HFP)-NaClO4 gel-polymer electrolyte film between the advanced NVPOF@FCC cathode and FCC anode. And the QSFBs are further evaluated in flexible pouch cells, which not only demonstrates excellent energy-storage performance in aspect of great cycling stability and high-rate capability, but also impressive flexibility and safety. This work offers a feasible and effective strategy for the design of flexible electrodes, paving the way for the progression of practical and sustainable flexible batteries.

total 2