Sort:
Research Article Online first
Lamellar quasi-solid electrolyte with nanoconfined deep eutectic solvent for high-performance lithium battery
Nano Research
Published: 15 April 2024
Downloads:18

Electrolytes with high-efficiency lithium-ion transfer and reliable safety are of great importance for lithium battery. Although having superior ionic conductivity (10−3–10−2 S·cm−1), traditional liquid-state electrolytes always suffer from low lithium-ion transference number ( tLi+, < 0.4) and thus undesirable battery performances. Herein, the deep eutectic solvent (DES) is vacuum-filtered into the ~ 1 nm interlayer channel of vermiculite (Vr) lamellar framework to fabricate a quasi-solid electrolyte (Vr-DES QSE). We demonstrate that the nanoconfinement effect of interlayer channel could facilitate the opening of solvation shell around lithium-ion. Meanwhile, the interaction from channel wall could inhibit the movement of anion. These enable high-efficiency lithium-ion transfer: 2.61 × 10−4 S·cm−1 at 25 °C. Importantly, the tLi+ value reaches 0.63, which is 4.5 times of that of bulk DES, and much higher than most present liquid/quasi-solid electrolytes. In addition, Vr-DES QSE shows significantly improved interfacial stability with Li anode as compared with DES. The assembled Li symmetric cell can operate stably for 1000 h at 0.1 mA·cm−2. The lithium iron phosphate (LFP)|Vr-DES QSE|Li cell exhibits high capacity of 142.1 mAh·g−1 after 200 cycles at 25 °C and 0.5 C, with a capacity retention of 94.5%. The strategy of open solvation shell through nanoconfinement effect of lamellar framework may shed light on the development of advanced electrolytes.

Research Article Issue
Formatted PVDF in lamellar composite solid electrolyte for solid-state lithium metal battery
Nano Research 2024, 17 (6): 5159-5167
Published: 01 February 2024
Downloads:61

Solid polymer electrolytes (SPEs) hold great application potential for solid-state lithium metal battery because of the excellent interfacial contact and processibility, but being hampered by the poor room-temperature conductivity (~ 10−7 S·cm−1) and low lithium-ion transference number ( tLi+). Here, a lamellar composite solid electrolyte (Vr-NH2@polyvinylidene fluoride (PVDF) LCSE) with β-conformation PVDF is fabricated by confining PVDF in the interlayer channel of –NH2 modified vermiculite lamellar framework. We demonstrate that the conformation of PVDF can be manipulated by the nanoconfinement effect and the interaction from channel wall. The presence of –NH2 groups could induce the formation of β-conformation PVDF through electrostatic interaction, which serves as continuous and rapid lithium-ion transfer pathway. As a result, a high room-temperature ionic conductivity of 1.77 × 10−4 S·cm−1 is achieved, 1–2 orders of magnitude higher than most SPEs. Furthermore, Vr-NH2@PVDF LCSE shows a high tLi+ of 0.68 because of the high dielectric constant, ~ 3 times of that of PVDF SPE, and surpassing most of reported SPEs. The LiNi0.8Co0.1Mn0.1O2||Li cell assembled by Vr-NH2@PVDF LCSE obtains a discharge specific capacity of 137.1 mAh·g−1 after 150 cycles with a capacity retention rate of 93% at 1 C and 25 °C. This study may pave a new avenue for high-performance SPEs.

Research Article Issue
Free-standing polymer-metal-organic framework membrane with high proton conductivity and water stability
Nano Research 2023, 16 (5): 7950-7957
Published: 29 November 2022
Downloads:40

As a new class of porous material, polymer-metal-organic framework (polyMOF) has attracted tremendous interests owing to their combined advantages of polymer and crystalline MOF. However, the poor film-forming ability of polyMOF limits its widespread application, especially in membrane separation area. Herein, for the first time, we demonstrate the fabrication of free-standing polyMOF membrane. The polyMOF nanosheets are synthesized by a polymer-assisted self-inhibition crystal growth strategy. Followed by self-assembly through vacuum filtration, a 20 μm-thick free-standing polyMOF membrane is constructed. Benefiting from the inclusion of polymer with hydrophobic backbone and the continuously distributed non-coordinated hydrophilic groups along polymer chain, the polyMOF membrane attains excellent structure stability against water, as well as superior proton transfer property. Proton conductivity as high as 112 and 25.6 mS·cm–1 is obtained by this polyMOF membrane at 100% and 20% relative humidity (RH), respectively, which are two orders of magnitude higher than those of pristine MOF. The conductivity under low humidity (20% RH) is even over 8 times higher than that of commercial Nafion membrane (3 mS·cm–1). This study may provide some guidance on the development of polyMOF membranes.

Research Article Issue
Nafion-threaded MOF laminar membrane with efficient and stable transfer channels towards highly enhanced proton conduction
Nano Research 2022, 15 (4): 3195-3203
Published: 20 October 2021
Downloads:40

Porous laminar membranes hold great promise to realize ultrafast ion transfer if efficient and stable transfer channels are constructed in vertical direction. Here, metal-organic framework (MOF) nanosheets bearing imidazole molecules in the pores were designed as building blocks to assemble free-standing MOF laminar membrane. Then, Nafion chains were threaded into the pores induced by electrostatic attraction from imidazole molecules by slowly filtering dilute Nafion solution. We demonstrate that the threaded Nafion chains lock adjacent MOF nanosheets, affording highly enhanced structural stability to the resultant laminar membrane with almost no water swelling. Significantly, abundant acid-base pairs are formed in the pores along Nafion chains, working as efficient, continuous conduction pathways in vertical direction. Proton conductivities as high as 110 and 46 mS·cm–1 are obtained by this membrane under 100% and 40% relative humidity (RH), respectively, which are two orders of magnitude higher than that of pristine MOF membrane. The conductivity under low humidity (40% RH) is even over 2 times higher than that of commercial Nafion membrane, generating the maximum power density of 1,100 mW·cm–2 in hydrogen fuel cell (vs. 291 mW·cm–2 of Nafion membrane). Besides, the influence of water state on proton transfer in confined space is investigated in detail.

total 4