Sort:
Open Access Research Article Issue
Robust Joule-heating ceramic reactors for catalytic CO oxidation
Journal of Advanced Ceramics 2022, 11 (7): 1163-1171
Published: 27 May 2022
Downloads:53

Joule-heating reactors have the higher energy efficiency and product selectivity compared with the reactors based on radiative heating. Current Joule-heating reactors are constructed with electrically-conductive metals or carbon materials, and therefore suffer from stability issue due to the presence of corrosive or oxidizing gases during high-temperature reactions. In this study, chemically-stable and electrically-conductive (La0.80Sr0.20)0.95FeO3 (LSF)/Gd0.1Ce0.9O2 (GDC) ceramics have been used to construct Joule-heating reactors for the first time. Taking the advantage of the resistance decrease of the ceramic reactors with temperature increase, the ceramic reactors heated under current control mode achieved the automatic adjustment of heating to stabilize reactor temperatures. In addition, the electrical resistance of LSF/GDC reactors can be tuned by the content of the high-conductive LSF in composite ceramics and ceramic density via sintering temperature, which offers flexibility to control reactor temperatures. The ceramic reactors with dendritic channels (less than 100 µm in diameter) showed the catalytic activity for CO oxidation, which was further improved by coating efficient MnO2 nanocatalyst on reactor channel wall. The Joule-heating ceramic reactors achieved complete CO oxidation at a low temperature of 165 ℃. Therefore, robust ceramic reactors have successfully demonstrated effective Joule heating for CO oxidation, which are potentially applied in other high-temperature catalytic reactions.

Open Access Research Article Issue
New two-layer Ruddlesden-Popper cathode materials for protonic ceramics fuel cells
Journal of Advanced Ceramics 2021, 10 (5): 1052-1060
Published: 15 September 2021
Downloads:127

New two-layer Ruddlesden-Popper (RP) oxide La0.25Sr2.75FeNiO7-δ (LSFN) in the combination of Sr3Fe2O7-δ and La3Ni2O7-δ was successfully synthesized and studied as the potential active single-phase and composite cathode for protonic ceramics fuel cells (PCFCs). LSFN with the tetragonal symmetrical structure (I4/mmm) is confirmed, and the co-existence of Fe3+/Fe4+ and Ni3+/Ni2+ couples is demonstrated by X-ray photoelectron spectrometer (XPS) analysis. The LSFN conductivity is apparently enhanced after Ni doping in Fe-site, and nearly three times those of Sr3Fe2O7-δ, which is directly related to the carrier concentration and conductor mechanism. Importantly, anode supported PCFCs using LSFN-BaZr0.1Ce0.7Y0.2O3-δ (LSFN-BZCY) composite cathode achieved high power density (426 mW·cm-2 at 650 ℃) and low electrode interface polarization resistance (0.26 Ω·cm2). Besides, distribution of relaxation time (DRT) function technology was further used to analyse the electrode polarization processes. The observed three peaks (P1, P2, and P3) separated by DRT shifted to the high frequency region with the decreasing temperature, suggesting that the charge transfer at the electrode-electrolyte interfaces becomes more difficult at reduced temperatures. Preliminary results demonstrate that new two-layer RP phase LSFN can be a promising cathode candidate for PCFCs.

total 2